
1/36

Directed Generative Nets

F. Noé1

Deep Learning Classes, FU Berlin 2018

2/36

Generative Neural Networks

3/36

Differentiable Generator Nets

Idea: Learn to sample intractable p(x) by sampling tractable latent
distribution

z∼ p(z)

and perform a linear transformation to a desired distribution:

x= G(z,θ)∼ p(x).

Architecture of G defines family of possible p(x) distributions.
Parameters θ select distribution from that family
Simple Example: standard procedure for drawing samples from a
normal distribution with mean µ and covariance Σ:

1 Sample: z∼N (0, I)
2 Transform: x= G(z) = µ +Lz, where Σ= L>L (Cholesky

decomposition).
Simple Example: sampling a univariate distribution p(x) with
cumulative distribution function q(x) =

∫ x
−∞

p(v)dv :
1 Sample z ∼ Uniform(0,1)
2 Transform x = G(z) = q−1(z).

4/36

Generative Neural Networks
Idea: Learn to sample intractable p(x) by sampling tractable latent
distribution

z∼ p(z)
and perform a linear transformation to a desired distribution:

x= G(z,θ)∼ p(x).
Example:

Left: Samples from normal distribution, z∼N (0, I).
Right: Samples mapped through G(z) = z

10 +
z
‖z‖ to form a ring.

5/36

Differentiable Generator Nets

Idea: Learn to sample intractable p(x) by sampling tractable latent
distribution

z∼ p(z)

and perform a linear transformation to a desired distribution:

x= G(z,θ)∼ p(x).

Complex Distribution:
G feedforward neural network
train parameters θ to sample from correct distribution.

Well-known neural network architectures:
Variational Autoencoders (inference net + generator net)
Generative Adversarial Networks (generator network +
discriminator network)

6/36

Reminder: Autoencoders

Latent variables encode “essential” information about data points x.

7/36

Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) – Kingma, 2013; Rezende et al., 2014

Instead of a single value for each attribute, represent each latent
attribute as a range of possible values.
E.g., what single value would you assign for the smile attribute if
you feed in a photo of the Mona Lisa?
VAE: describe latent attributes in probabilistic terms.

8/36

Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) – Kingma, 2013; Rezende et al., 2014

Directed model that uses learned approximate inference and can be
trained purely with gradient-based methods.
Represent each latent attribute for a given input as a probability
distribution.
When decoding from the latent state, randomly sample from latent
state distribution to generate a vector as input for decoder model.

9/36

Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) – Kingma, 2013; Rezende et al., 2014

Encoder: define probability distribution of latent variables
Sample: latent variables z given the encoding of input x
Decode: z so as to reconstruct corresponding input x.
Enforces a continuous, smooth latent space representation.
Values which are nearby to one another in latent space should
correspond to similar reconstructions.

10/36

Variational Inference

Variables x are visible but z are hidden → we need to infer the
characteristics of z from x:

p(z | x) = p(x | z)p(z)
p(x)

But computing p(x) is extremely difficult:

p(x) =
∫
z
p(x | z)p(z)dz

Approaches:
Markov-Chain Monte Carlo (no bias, but high variance)
Variational inference (bias, no variance)

Variational inference idea: approximate p(z | x) by a tractable
distribution q(z | x;θ) by optimizing parameters θ and then perform
inference with q.

11/36

Kullback-Leibler Divergence

Kullback-Leibler divergence (KL-divergence or relative entropy)
between two distributions p(x) and q(x) measures the dissimilarity
between the two distributions:

DKL(q ‖ p) =
∫
x
q(x) log q(x)

p(x)dx

Interpretation: Expectation w.r.t. q of the logarithmic difference
between the two distributions p and q.
Properties:

Nonnegativity: DKL(q ‖ p)≥ 0 with equality if and only if p ≡ q (in
the sense of probability distributions)
DKL(q ‖ p) 6= DKL(p ‖ q) – the KL-divergence is not symmetric in its
arguments.

12/36

Variational Autoencoders
Variational Free Energy vs. Evidence Lower BOund (ELBO)

Goal: Ensure that tractable distribution q(z|x) is similar to
intractable distribution p(z|x).
Means: minimize KL divergence

DKL (q ‖ p) = DKL (q(z | x) ‖ p(z | x)) =
∫
z
q(z | x) log q(z | x)

p(z | x)dz

Direct computation is not possible because:

p(z | x) = p(x,z)
p(x)

p(x) =
∫
z
p(x,z)dz

Is intractable. → We cannot directly compute DKL (q ‖ p). Can we
find another way to minimize DKL (q ‖ p) without knowing its value?

13/36

Variational Autoencoders
Variational Free Energy vs. Evidence Lower BOund (ELBO)

Using p(z | x) = p(x,z)/p(x):

DKL(q ‖ p) =
∫
z
q(z | x) log q(z | x)

p(z | x)dz

=
∫
z
q(z | x) log

(
q(z | x)
p(x,z) p(x)

)
dz

Using Properties of the log and splitting the integral:

DKL(q ‖ p) =
∫
z
q(z | x)

[
log q(z | x)

p(x,z) + logp(x)
]

dz

=
∫
z
q(z | x)

[
log q(z | x)

p(x,z)

]
dz+ logp(x)

∫
z
q(z | x)dz

Exploiting that q is a probability distribution
∫
z q(z) = 1:

DKL(q ‖ p) =
∫
z
q(z | x)

[
log q(z | x)

p(x,z)

]
dz︸ ︷︷ ︸

L

+ logp(x)

14/36

Variational Autoencoders
Variational Free Energy vs. Evidence Lower BOund (ELBO)

KL divergence

DKL(q ‖ p) = L+ logp(x)

Variational free energy (upper bound to − logp(x)):

L =
∫
z
q(z | x)

[
log q(z | x)

p(x,z)

]
dz

−L: Variational Evidence Lower BOund (ELBO):

−L = logp(x)−DKL(q ‖ p)≤ logp(x)

Since p(x) is a constant in z we can minimize DKL(q ‖ p) by
minimizing the variational free energy or maximizing the ELBO:

argminDKL(q ‖ p) = argminL = argmax−L

15/36

Variational Autoencoders
Variational Free Energy vs. Evidence Lower BOund (ELBO)

Using p(x,z) = p(x | z)p(z):

L =
∫
z
q(z | x)

[
log q(z | x)

p(x,z)

]
dz

=
∫
z
q(z | x)

[
log q(z | x)

p(x | z)p(z)

]
dz

Using properties of the log:

L =
∫
z
q(z | x) log q(z | x)

p(z) dz−
∫
z
q(z | x) logp(x | z)dz

Interpreting these terms:

L = DKL(q(z | x) ‖ p(z))−Ez∼q(z|x) logp(x | z)

We assume that q has a tractable form (e.g. factorizes)

16/36

Variational Autoencoders
Structure

min
{
−Ez∼q(z|x) logp(x | z)+DKL(q(z | x) ‖ p(z))

}
Encoder q(z | x) (inference network, recognition model):

Maps to latent space
Models approximate posterior distribution q.
DKL [q(z | x) ‖ pmodel(z)] tries to make q(z | x) and pmodel(z) similar.

Decoder p(x | z).
Decodes z→ x̂ with the aim to reconstruct the input x.
Ez∼q(z|x) logpmodel(x | z) reconstruction log-likelihood

17/36

Gaussian VAE
Structure

18/36

Gaussian VAE
Explicit Solution for Regularization Loss (KL-divergence)

Ansatz: isotropic Gaussian generative model:

q(z | x) = N (z; µ(x),diag(σ2(x)))

=
1√

2π ∏
d
i=1 σi

exp
[
−1
2

d
∑
i=1

(
xi −µi

σi

)2
]

and standard normal latent variables:

p(z) = N (0, I)

We can compute DKL(q(z | x) ‖ p(z)) explicitly:

DKL(q(z | x) ‖ p(z)) =
∫
z
q(z | x) log q(z | x)

p(z) dz

=
1
2

d
∑
i=1

(
1+ logσ

2
i (x)−µ

2
i (x)−σ

2
i (x)

)
This loss can be easily computed.

19/36

Computing the Reconstruction Loss
Reparametrization Trick

Let us write the loss explicitly with parameters:

L =−Ez∼q(z|x) logp(x | z;θ dec)+DKL(q(z | x,θ enc) ‖ p(z))

Computing reconstruction loss involves a sampling of hidden
variables z.
In stochastic gradient descent, it is natural to replace expectation by
a single sample for each x:

logp(x | z;θ dec)∼ Ez∼q(z|x) logp(x | z;θ dec)

However, the process of sampling a pdf itself is not differentiable. In
order to compute derivatives, we use the reparametrization trick:

1 Randomly sample ε from a unit Gaussian

ε ∼N (0, I)

2 Shift ε by mean and scale it by variance of the latent distribution:

z= µ(x)+σ(x)� ε

20/36

Computing the Reconstruction Loss
Reparametrization Trick

Now we can optimize the parameters of the distribution while still
maintaining the ability to randomly sample from that distribution.

Note: To avoid negative values for σ , we can learn logσ and take the
exp.

21/36

Computing the Reconstruction Loss
Evaluations Reconstruction Loss by Sample

For each sample pair x, z, evaluate:

logp(x | z;θ)

Example: Binary MNIST
Use binary images xi ∈ {0,1},
Use logistic (sigmoid) output layer in decoder to model
x̂i (x,θ) = (p(xi) = 1).
Compute log-likelihood (see last lecture, logistic regression)

L(θ) =
N
∑
i=1

xi log x̂i (x,θ)+(1−xi) log [1− x̂i (x,θ)]

In practice often other reconstruction losses are used, e.g. ‖xi − x̂i‖22.
There is a disconnect between the mathematical theory and common
implementations that are often based on trying to do something
similar as suggested by the intuitive interpretation of mathematics!

22/36

Variational Autoencoders

23/36

Variational Autoencoders

24/36

Variational Autoencoders
MNIST VAE / Variational Autoencoder

min
{
−Ez∼q(z|x) logp(x | z)+DKL(q(z | x) ‖ p(z))

}

25/36

Gaussian VAE
Discussion

VAE advantages:
Structure is elegant, theoretically pleasing, and simple to implement.
Excellent results, among the state of the art approaches to
generative modeling.
Very robust → key advantage over Boltzmann machines, which
require extremely careful model design to maintain tractability.
Work very well with a diverse family of differentiable operators.

26/36

Gaussian VAE
Discussion

VAE disadvantages:
Image VAE samples tend to be blurry.
Maximizing a lower bound on the likelihood of such a distribution is
similar to training a traditional autoencoder with mean squared error
Tends to ignore small/local features of the input.
Current VAEs tend to use only a small subset of the dimensions of z.

27/36

Examples
DRAW: A Recurrent Neural Network For Image Generation (Gregor et al, 2015)

Trained DRAW network generating MNIST digits. Each row shows successive stages
in the generation of a single digit. Note how the lines composing the digits appear to
be “drawn” by the network. The red rectangle delimits the area attended to by the
network at each time-step, with the focal precision indicated by the width of the
rectangle border.

28/36

Examples
DRAW: A Recurrent Neural Network For Image Generation (Gregor et al, 2015)

Left: Conventional Variational Auto-Encoder. Right: DRAW Network. At each
time-step a sample zt from the prior P(z1:T) is passed to the recurrent decoder
network, which then modifies part of the canvas matrix. The final canvas matrix cT is
used to compute P(x|z1:T) . During inference the input is read at every time- step and
the result is passed to the encoder RNN. The RNNs at the previous time-step specify
where to read. The output of the encoder RNN is used to compute the approximate
posterior over the latent variables at that time-step.

29/36

Examples
DRAW: A Recurrent Neural Network For Image Generation (Gregor et al, 2015)

SVHN Generation Sequences. The red rectangle indicates the attention patch.
Notice how the network draws the digits one at a time, and how it moves and scales
the writing patch to produce numbers with different slopes and sizes.

30/36

Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Starting from a discrete molecular representation, such as a SMILES
string, the encoder network converts each molecule into a vector in the latent space,
which is effectively a continuous molecular representation. Given a point in the latent
space, the decoder network produces a corresponding SMILES string.
Architecture:

Encode characters strings into vectors using recurrent neural networks (RNNs).
Encoder: 1D convolutional layers, fully-connected layer
Decoder: Three layers of gated recurrent unit (GRU) networks.
The last layer of the RNN decoder defines a probability distribution over all
possible characters at each position in the SMILES string (stochastic writeout)

31/36

Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Projection of the molecular training sets onto learned two-dimensional
latent spaces. The one-dimensional histograms show the distribution of the training
data along each dimension, overlaid with the Gaussian prior imposed in the variational
autoencoder. The points are colored along a chemical property that is relevant to
their function, and will be the target of optimization experiments. Left: A natural
library of drug-like molecules, colored by their predicted water-octanol partition
coefficient. Right: A combinatorially-generated library of organic LED molecules,
colored by their predicted delayed fluorescent emission rate (kTADF in µs−1).

32/36

Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Molecules decoded from randomly-sampled points in the latent space
of a variational autoencoder, near to a given molecule (aspirin [2-(acetyloxy)benzoic
acid], highlighted in blue).

33/36

Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Two-dimensional interpolation between four random drugs. Left:
Starting molecules, whose encodings defined the four corners of a place in the latent
space. Right: Decodings of linearly-interpolated points between the latent
representations of the four molecules to the right.

34/36

Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Gradient-based optimization in continuous latent space. After training
a surrogate model f (z) to predict the properties of molecules based on their latent
representation z, we can optimize f (z) with respect to z to find new latent
representation expected to have high values of desired properties. These new latent
representations can then be decoded into SMILES strings, at which point their
properties can be tested emprically.

35/36

Project (Noé group)
Adaptive Markov Chain Monte Carlo (MCMC)

Aim: Given µ(x) ∝ e−u(x) as input, we want to sample x efficiently
using MCMC.
Difficulty: Make efficient steps x1→ x2 that have a high acceptance
probability and cover a large distance d(x1,x2).
Approach:

Use neural network to learn complex proposal step x1→ x2 in a way
that allows us to compute pacc(x1→ x2)
Maximize efficiency

S(x1→ x2) = pacc(x1→ x2)d(x1,x2)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

m
u
(x

)

before training

0.00

0.05

0.10

0.15

0.20

0.25

si
g
m

a
(x

)

before training

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

m
u
(x

)

after training

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

x

0.00

0.05

0.10

0.15

0.20

0.25

si
g
m

a
(x

)

after training

36/36

Project (Noé group)
Adaptive Markov Chain Monte Carlo (MCMC)

Aim: Given µ(x) ∝ e−u(x) as input, we want to sample x efficiently
using MCMC.
Difficulty: Make efficient steps x1→ x2 that have a high acceptance
probability and cover a large distance d(x1,x2).
Approach:

Use neural network to learn complex proposal step x1→ x2 in a way
that allows us to compute pacc(x1→ x2)
Maximize efficiency

S(x1→ x2) = pacc(x1→ x2)d(x1,x2)

