
1/24

Reinforcement learning

F. Noé1

Deep Learning Classes, FU Berlin 2018

2/24

Reinforcement Learning

3/24

Reinforcement Learning: Basic Terms

Basic model:
Agent interacts with Environment, e.g. a chess player interacts
with the game board (states, rules) and the opponent.
State st ∈S : The current state of the environment visible to the
agent, e.g. positions of all figures on the board.
Action at ∈A : The current action taken by the agent, e.g. move
knight from B1 to C3.
Reward rt ∈ R: Immediate reward for the step st

at→ st+1, e.g.
improvement of the board situation.

Aim: Take actions at so as to maximize long-term reward.

3/24

Reinforcement Learning: Basic Terms

Basic model:
Agent interacts with Environment, e.g. a chess player interacts
with the game board (states, rules) and the opponent.
State st ∈S : The current state of the environment visible to the
agent, e.g. positions of all figures on the board.
Action at ∈A : The current action taken by the agent, e.g. move
knight from B1 to C3.
Reward rt ∈ R: Immediate reward for the step st

at→ st+1, e.g.
improvement of the board situation.

Aim: Take actions at so as to maximize long-term reward.

3/24

Reinforcement Learning: Basic Terms

Basic model:
Agent interacts with Environment, e.g. a chess player interacts
with the game board (states, rules) and the opponent.
State st ∈S : The current state of the environment visible to the
agent, e.g. positions of all figures on the board.
Action at ∈A : The current action taken by the agent, e.g. move
knight from B1 to C3.
Reward rt ∈ R: Immediate reward for the step st

at→ st+1, e.g.
improvement of the board situation.

Aim: Take actions at so as to maximize long-term reward.

3/24

Reinforcement Learning: Basic Terms

Basic model:
Agent interacts with Environment, e.g. a chess player interacts
with the game board (states, rules) and the opponent.
State st ∈S : The current state of the environment visible to the
agent, e.g. positions of all figures on the board.
Action at ∈A : The current action taken by the agent, e.g. move
knight from B1 to C3.
Reward rt ∈ R: Immediate reward for the step st

at→ st+1, e.g.
improvement of the board situation.

Aim: Take actions at so as to maximize long-term reward.

4/24

Markov Decision Process (MDP)

Known Inputs:
Finite set of discrete states st and actions at .
Initial probabilities: µ(s0). Transition dynamics Pat (st+1 | st).
Reward rt = Rat (st ,st+1) is paid after applying at in state st ,
leading to a transition to st+1.

Optimization problem: maxπ Jπ with:
Policy vector π(a | s): probabilities of choosing actions a ∼ π(a | s).
Long-time reward using finite time horizon or infinite time horizon
with discount factor γ:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
JT

π = Eµ0,P,π

[
T
∑
t=0

rt

]

4/24

Markov Decision Process (MDP)

Known Inputs:
Finite set of discrete states st and actions at .
Initial probabilities: µ(s0). Transition dynamics Pat (st+1 | st).
Reward rt = Rat (st ,st+1) is paid after applying at in state st ,
leading to a transition to st+1.

Optimization problem: maxπ Jπ with:
Policy vector π(a | s): probabilities of choosing actions a ∼ π(a | s).
Long-time reward using finite time horizon or infinite time horizon
with discount factor γ:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
JT

π = Eµ0,P,π

[
T
∑
t=0

rt

]

4/24

Markov Decision Process (MDP)

Known Inputs:
Finite set of discrete states st and actions at .
Initial probabilities: µ(s0). Transition dynamics Pat (st+1 | st).
Reward rt = Rat (st ,st+1) is paid after applying at in state st ,
leading to a transition to st+1.

Optimization problem: maxπ Jπ with:
Policy vector π(a | s): probabilities of choosing actions a ∼ π(a | s).
Long-time reward using finite time horizon or infinite time horizon
with discount factor γ:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
JT

π = Eµ0,P,π

[
T
∑
t=0

rt

]

4/24

Markov Decision Process (MDP)

Known Inputs:
Finite set of discrete states st and actions at .
Initial probabilities: µ(s0). Transition dynamics Pat (st+1 | st).
Reward rt = Rat (st ,st+1) is paid after applying at in state st ,
leading to a transition to st+1.

Optimization problem: maxπ Jπ with:
Policy vector π(a | s): probabilities of choosing actions a ∼ π(a | s).
Long-time reward using finite time horizon or infinite time horizon
with discount factor γ:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
JT

π = Eµ0,P,π

[
T
∑
t=0

rt

]

4/24

Markov Decision Process (MDP)

Known Inputs:
Finite set of discrete states st and actions at .
Initial probabilities: µ(s0). Transition dynamics Pat (st+1 | st).
Reward rt = Rat (st ,st+1) is paid after applying at in state st ,
leading to a transition to st+1.

Optimization problem: maxπ Jπ with:
Policy vector π(a | s): probabilities of choosing actions a ∼ π(a | s).
Long-time reward using finite time horizon or infinite time horizon
with discount factor γ:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
JT

π = Eµ0,P,π

[
T
∑
t=0

rt

]

5/24

Markov Decision Process (MDP)

Solution with dynamic programming: Optimal solution is a policy that
assigns a best action to every state:

s → â(s)

Solution is found by iterating two equations that update the best action
â(s) and the estimated value of a state s, V (s) (Bellmann 1957):

â(s)← argmax
a

{
∑
s ′
Pa(s ′ | s)

(
Ra(s,s ′) + γV (s ′)

)}
V (s)←∑

s ′
Pâ(s)(s ′ | s)

(
Râ(s)(s,s ′) + γV (s ′)

)

5/24

Markov Decision Process (MDP)

Solution with dynamic programming: Optimal solution is a policy that
assigns a best action to every state:

s → â(s)

Solution is found by iterating two equations that update the best action
â(s) and the estimated value of a state s, V (s) (Bellmann 1957):

â(s)← argmax
a

{
∑
s ′
Pa(s ′ | s)

(
Ra(s,s ′) + γV (s ′)

)}
V (s)←∑

s ′
Pâ(s)(s ′ | s)

(
Râ(s)(s,s ′) + γV (s ′)

)

6/24

Reinforcement learning

Reinforcement learning: Probabilities or rewards are unknown.
Value-based RL / Q learning: Define state-action quality function:

Q(s,a) = ∑
s ′
Pa(s′ | s)(Ra(s,s′) + γV (s′))

and then derives a policy selection probability vector π(a | s), e.g.:
For competitive performance: π∗ = argmaxaQ(s,a)

For exploring the search tree: π(a | s) = eQ(s,a)

∑a′ eQ(s,a′)

Policy-search RL: Parametric policy π(a | s;θ). Optimize θ .
Many modern RL techniques contain aspects of both, e.g. AlphaGo.

6/24

Reinforcement learning

Reinforcement learning: Probabilities or rewards are unknown.
Value-based RL / Q learning: Define state-action quality function:

Q(s,a) = ∑
s ′
Pa(s′ | s)(Ra(s,s′) + γV (s′))

and then derives a policy selection probability vector π(a | s), e.g.:
For competitive performance: π∗ = argmaxaQ(s,a)

For exploring the search tree: π(a | s) = eQ(s,a)

∑a′ eQ(s,a′)

Policy-search RL: Parametric policy π(a | s;θ). Optimize θ .
Many modern RL techniques contain aspects of both, e.g. AlphaGo.

6/24

Reinforcement learning

Reinforcement learning: Probabilities or rewards are unknown.
Value-based RL / Q learning: Define state-action quality function:

Q(s,a) = ∑
s ′
Pa(s′ | s)(Ra(s,s′) + γV (s′))

and then derives a policy selection probability vector π(a | s), e.g.:
For competitive performance: π∗ = argmaxaQ(s,a)

For exploring the search tree: π(a | s) = eQ(s,a)

∑a′ eQ(s,a′)

Policy-search RL: Parametric policy π(a | s;θ). Optimize θ .
Many modern RL techniques contain aspects of both, e.g. AlphaGo.

6/24

Reinforcement learning

Reinforcement learning: Probabilities or rewards are unknown.
Value-based RL / Q learning: Define state-action quality function:

Q(s,a) = ∑
s ′
Pa(s′ | s)(Ra(s,s′) + γV (s′))

and then derives a policy selection probability vector π(a | s), e.g.:
For competitive performance: π∗ = argmaxaQ(s,a)

For exploring the search tree: π(a | s) = eQ(s,a)

∑a′ eQ(s,a′)

Policy-search RL: Parametric policy π(a | s;θ). Optimize θ .
Many modern RL techniques contain aspects of both, e.g. AlphaGo.

6/24

Reinforcement learning

Reinforcement learning: Probabilities or rewards are unknown.
Value-based RL / Q learning: Define state-action quality function:

Q(s,a) = ∑
s ′
Pa(s′ | s)(Ra(s,s′) + γV (s′))

and then derives a policy selection probability vector π(a | s), e.g.:
For competitive performance: π∗ = argmaxaQ(s,a)

For exploring the search tree: π(a | s) = eQ(s,a)

∑a′ eQ(s,a′)

Policy-search RL: Parametric policy π(a | s;θ). Optimize θ .
Many modern RL techniques contain aspects of both, e.g. AlphaGo.

6/24

Reinforcement learning

Reinforcement learning: Probabilities or rewards are unknown.
Value-based RL / Q learning: Define state-action quality function:

Q(s,a) = ∑
s ′
Pa(s′ | s)(Ra(s,s′) + γV (s′))

and then derives a policy selection probability vector π(a | s), e.g.:
For competitive performance: π∗ = argmaxaQ(s,a)

For exploring the search tree: π(a | s) = eQ(s,a)

∑a′ eQ(s,a′)

Policy-search RL: Parametric policy π(a | s;θ). Optimize θ .
Many modern RL techniques contain aspects of both, e.g. AlphaGo.

7/24

Reinforcement learning

Probabilities P or rewards r are unknown → How do we compute:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
Q(s,a) = ∑

s ′
Pa(s,s′)(Ra(s,s′) + γV (s′))

Monte-Carlo search: Sample J∞
π or Q by generating many

transition pairs st
at→ st+τ .

Playouts: Start in an initial random state and simulate moves until
T steps have been made or a terminal state has been reached.
Difficulties: Playouts are expensive and search tree expands with
branching factor n (Number of actions) in every step. → How do we
sample relevant playouts likely to lead to winning strategies?

7/24

Reinforcement learning

Probabilities P or rewards r are unknown → How do we compute:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
Q(s,a) = ∑

s ′
Pa(s,s′)(Ra(s,s′) + γV (s′))

Monte-Carlo search: Sample J∞
π or Q by generating many

transition pairs st
at→ st+τ .

Playouts: Start in an initial random state and simulate moves until
T steps have been made or a terminal state has been reached.
Difficulties: Playouts are expensive and search tree expands with
branching factor n (Number of actions) in every step. → How do we
sample relevant playouts likely to lead to winning strategies?

7/24

Reinforcement learning

Probabilities P or rewards r are unknown → How do we compute:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
Q(s,a) = ∑

s ′
Pa(s,s′)(Ra(s,s′) + γV (s′))

Monte-Carlo search: Sample J∞
π or Q by generating many

transition pairs st
at→ st+τ .

Playouts: Start in an initial random state and simulate moves until
T steps have been made or a terminal state has been reached.
Difficulties: Playouts are expensive and search tree expands with
branching factor n (Number of actions) in every step. → How do we
sample relevant playouts likely to lead to winning strategies?

7/24

Reinforcement learning

Probabilities P or rewards r are unknown → How do we compute:

J∞
π = Eµ0,P,π

[
∞

∑
t=0

γ
t rt

]
Q(s,a) = ∑

s ′
Pa(s,s′)(Ra(s,s′) + γV (s′))

Monte-Carlo search: Sample J∞
π or Q by generating many

transition pairs st
at→ st+τ .

Playouts: Start in an initial random state and simulate moves until
T steps have been made or a terminal state has been reached.
Difficulties: Playouts are expensive and search tree expands with
branching factor n (Number of actions) in every step. → How do we
sample relevant playouts likely to lead to winning strategies?

8/24

Monte Carlo Tree Search (MCTS)
Purpose: Faster/Better Playouts

1

Number of games won / number of games played by black or white player.

Aim: analyse most promising moves of a game by expanding the
search tree based on random sampling of the search space.
Playouts: in each playout, the game is played to the end or to the
stopping node by selecting moves at random.
Weight nodes in game tree with final game result of each playout
→ better nodes are more likely to be chosen in future playouts.

1From https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

8/24

Monte Carlo Tree Search (MCTS)
Purpose: Faster/Better Playouts

1

Number of games won / number of games played by black or white player.

Aim: analyse most promising moves of a game by expanding the
search tree based on random sampling of the search space.
Playouts: in each playout, the game is played to the end or to the
stopping node by selecting moves at random.
Weight nodes in game tree with final game result of each playout
→ better nodes are more likely to be chosen in future playouts.

1From https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

8/24

Monte Carlo Tree Search (MCTS)
Purpose: Faster/Better Playouts

1

Number of games won / number of games played by black or white player.

Aim: analyse most promising moves of a game by expanding the
search tree based on random sampling of the search space.
Playouts: in each playout, the game is played to the end or to the
stopping node by selecting moves at random.
Weight nodes in game tree with final game result of each playout
→ better nodes are more likely to be chosen in future playouts.

1From https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

9/24

Monte Carlo Tree Search (MCTS)
Purpose: To avoid overfitting as a function of training time

1

Number of games won / number of games played by black or white player.

Steps of each MCTS round:
1 Selection: start from root R and select successive child nodes down

to a leaf node L.
2 Expansion: unless L ends the game with a win/loss for either

player, create child nodes and choose node C from one of them.
3 Simulation: play a random playout from node C .
4 Backpropagation: use the result of the playout to update

information in the nodes on the path from C to R.
After that we make the move that has the most simulation made.1From https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

9/24

Monte Carlo Tree Search (MCTS)
Purpose: To avoid overfitting as a function of training time

1

Number of games won / number of games played by black or white player.

Steps of each MCTS round:
1 Selection: start from root R and select successive child nodes down

to a leaf node L.
2 Expansion: unless L ends the game with a win/loss for either

player, create child nodes and choose node C from one of them.
3 Simulation: play a random playout from node C .
4 Backpropagation: use the result of the playout to update

information in the nodes on the path from C to R.
After that we make the move that has the most simulation made.1From https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

9/24

Monte Carlo Tree Search (MCTS)
Purpose: To avoid overfitting as a function of training time

1

Number of games won / number of games played by black or white player.

Steps of each MCTS round:
1 Selection: start from root R and select successive child nodes down

to a leaf node L.
2 Expansion: unless L ends the game with a win/loss for either

player, create child nodes and choose node C from one of them.
3 Simulation: play a random playout from node C .
4 Backpropagation: use the result of the playout to update

information in the nodes on the path from C to R.
After that we make the move that has the most simulation made.1From https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

9/24

Monte Carlo Tree Search (MCTS)
Purpose: To avoid overfitting as a function of training time

1

Number of games won / number of games played by black or white player.

Steps of each MCTS round:
1 Selection: start from root R and select successive child nodes down

to a leaf node L.
2 Expansion: unless L ends the game with a win/loss for either

player, create child nodes and choose node C from one of them.
3 Simulation: play a random playout from node C .
4 Backpropagation: use the result of the playout to update

information in the nodes on the path from C to R.
After that we make the move that has the most simulation made.1From https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

10/24

Deep Reinforcement Learning

Policy network Π: maps state to prior policy

s → π = Π(s)

Value network V : maps state to value

s → v = V (s)

Iterate:
1 Generate playouts, i.e. apply Π and MCTS samples until game is

won or a number of actions have been taken.
2 Given the observed state-action sequences st

at→ st+1, train Π and V .

11/24

Alpha Go and Sons

12/24

Go

13/24

Alpha Go and Sons

14/24

Alpha Go Zero (Silver et al., Nature 2017)
Self-play reinforcement learning

Self Play: Create a training set
Best current player plays 25,000 games against itself
Each move is made based on MCTS that is informed by a trainable
policy/value network.
At each move, store the MCTS search probabilities.
For each game, store the winner (+1,−1).

Train Network: Optimize Π, V network weights
Sample mini-batch of 2,048 positions from the last 500,000 games.
Retrain Π network: minimize cross-entropy with π from MCTS
Retrain V network: minimize mean square error to actual winners.

Evaluate Network: Test if we have a new champion
Play 400 games competitively between latest network and current
best network.
Both Players use MCTS and their respective networks to select
moves
Latest network is declared best player if it wins 55% of the games.

14/24

Alpha Go Zero (Silver et al., Nature 2017)
Self-play reinforcement learning

Self Play: Create a training set
Best current player plays 25,000 games against itself
Each move is made based on MCTS that is informed by a trainable
policy/value network.
At each move, store the MCTS search probabilities.
For each game, store the winner (+1,−1).

Train Network: Optimize Π, V network weights
Sample mini-batch of 2,048 positions from the last 500,000 games.
Retrain Π network: minimize cross-entropy with π from MCTS
Retrain V network: minimize mean square error to actual winners.

Evaluate Network: Test if we have a new champion
Play 400 games competitively between latest network and current
best network.
Both Players use MCTS and their respective networks to select
moves
Latest network is declared best player if it wins 55% of the games.

14/24

Alpha Go Zero (Silver et al., Nature 2017)
Self-play reinforcement learning

Self Play: Create a training set
Best current player plays 25,000 games against itself
Each move is made based on MCTS that is informed by a trainable
policy/value network.
At each move, store the MCTS search probabilities.
For each game, store the winner (+1,−1).

Train Network: Optimize Π, V network weights
Sample mini-batch of 2,048 positions from the last 500,000 games.
Retrain Π network: minimize cross-entropy with π from MCTS
Retrain V network: minimize mean square error to actual winners.

Evaluate Network: Test if we have a new champion
Play 400 games competitively between latest network and current
best network.
Both Players use MCTS and their respective networks to select
moves
Latest network is declared best player if it wins 55% of the games.

15/24

Alpha Go Zero (Silver et al., Nature 2017)
Self-play reinforcement learning

Program plays games against itself – state sequences: s1, ...,sT .
In each position st , execute Monte-Carlo tree search (MCTS) using
the current policy-value network Π,V and compute search
probabilities πt .
Select move at ∼ πt .
Store game winner z defined by terminal position sT .

15/24

Alpha Go Zero (Silver et al., Nature 2017)
Self-play reinforcement learning

Program plays games against itself – state sequences: s1, ...,sT .
In each position st , execute Monte-Carlo tree search (MCTS) using
the current policy-value network Π,V and compute search
probabilities πt .
Select move at ∼ πt .
Store game winner z defined by terminal position sT .

15/24

Alpha Go Zero (Silver et al., Nature 2017)
Self-play reinforcement learning

Program plays games against itself – state sequences: s1, ...,sT .
In each position st , execute Monte-Carlo tree search (MCTS) using
the current policy-value network Π,V and compute search
probabilities πt .
Select move at ∼ πt .
Store game winner z defined by terminal position sT .

15/24

Alpha Go Zero (Silver et al., Nature 2017)
Self-play reinforcement learning

Program plays games against itself – state sequences: s1, ...,sT .
In each position st , execute Monte-Carlo tree search (MCTS) using
the current policy-value network Π,V and compute search
probabilities πt .
Select move at ∼ πt .
Store game winner z defined by terminal position sT .

16/24

Alpha Go Zero (Silver et al., Nature 2017)
MCTS

17/24

Alpha Go Zero
MCTS

N Number of times selected, P prior selection probability, W /Q total/mean next value

Starting at current game state s0 = s, i = 0, run 1,600 times:
While si not leaf: si

a→ si+1 with action a that maximizes
Q +U(P,N)
U dominates early in simulation (exploration), Q dominates later (exploitation)
Leaf node si : Predict value v = V (si) and policy Π(si). Set priors of
next nodes:

P(si ,a) = Πa(si)

Backup edges: For each edge (si ,a) traversed
N(si ,a)+ = 1 W (si ,a)+ = v Q = W /N

17/24

Alpha Go Zero
MCTS

N Number of times selected, P prior selection probability, W /Q total/mean next value

Starting at current game state s0 = s, i = 0, run 1,600 times:
While si not leaf: si

a→ si+1 with action a that maximizes
Q +U(P,N)
U dominates early in simulation (exploration), Q dominates later (exploitation)
Leaf node si : Predict value v = V (si) and policy Π(si). Set priors of
next nodes:

P(si ,a) = Πa(si)

Backup edges: For each edge (si ,a) traversed
N(si ,a)+ = 1 W (si ,a)+ = v Q = W /N

17/24

Alpha Go Zero
MCTS

N Number of times selected, P prior selection probability, W /Q total/mean next value

Starting at current game state s0 = s, i = 0, run 1,600 times:
While si not leaf: si

a→ si+1 with action a that maximizes
Q +U(P,N)
U dominates early in simulation (exploration), Q dominates later (exploitation)
Leaf node si : Predict value v = V (si) and policy Π(si). Set priors of
next nodes:

P(si ,a) = Πa(si)

Backup edges: For each edge (si ,a) traversed
N(si ,a)+ = 1 W (si ,a)+ = v Q = W /N

18/24

Alpha Go Zero (Silver et al., Nature 2017)
Move selection

N Number of times selected, P prior selection probability, W /Q total/mean next value

After 1,600 simulations, choose move:
During self play (exploration): π ∼ N1/τ , temperature parameter τ

During competitive play: maxN.
Subtree with chosen move is kept, remaining tree is discarded.

18/24

Alpha Go Zero (Silver et al., Nature 2017)
Move selection

N Number of times selected, P prior selection probability, W /Q total/mean next value

After 1,600 simulations, choose move:
During self play (exploration): π ∼ N1/τ , temperature parameter τ

During competitive play: maxN.
Subtree with chosen move is kept, remaining tree is discarded.

18/24

Alpha Go Zero (Silver et al., Nature 2017)
Move selection

N Number of times selected, P prior selection probability, W /Q total/mean next value

After 1,600 simulations, choose move:
During self play (exploration): π ∼ N1/τ , temperature parameter τ

During competitive play: maxN.
Subtree with chosen move is kept, remaining tree is discarded.

18/24

Alpha Go Zero (Silver et al., Nature 2017)
Move selection

N Number of times selected, P prior selection probability, W /Q total/mean next value

After 1,600 simulations, choose move:
During self play (exploration): π ∼ N1/τ , temperature parameter τ

During competitive play: maxN.
Subtree with chosen move is kept, remaining tree is discarded.

19/24

Alpha Go Zero (Silver et al., Nature 2017)
Neural network architecture

Game state: Conv Layer:

Residual Layer:

20/24

Alpha Go Zero (Silver et al., Nature 2017)
Neural network architecture

Value head Policy head

21/24

Alpha Go Zero (Silver et al., Nature 2017)
Neural network training in AlphaGo Zero

Elo rating EA, EB for zero sum games (A wins → B loses):

p(Awins) =
1

1+10−(EA−EB)/400

EA−EB =−400 log10 (1/p(Awins)−1)

p(A wins) 0.01 0.1 0.5 0.9 0.99
EA−EB -798 -381 0 381 798

Left: Performance of self-play reinforcement learning.
Middle: Prediction accuracy on human professional moves.
Right: Mean-squared error (MSE) on human professional game outcomes.

22/24

Alpha Go Zero (Silver et al., Nature 2017)
Neural network training in AlphaGo Zero

Performance of AlphaGo Zero.
a Learning curve for AlphaGo Zero using larger 40 block residual network over 40 days.
b Final performance of AlphaGo Zero. AlphaGo Zero was trained for 40 days using a
40 residual block neural network. The plot shows the results of a tournament between:
AlphaGo Zero, AlphaGo Master (defeated top human professionals 60-0 in online
games), AlphaGo Lee (defeated Lee Sedol), AlphaGo Fan (defeated Fan Hui), as well
as previous Go programs Crazy Stone, Pachi and GnuGo.

23/24

Alpha Zero (Silver et al., 2017)
Main changes to Alpha Go Zero:

Maximize expected number of wins instead of number of wins
Keeps only one network (no “champion” who needs to win 55% of
the games)
Plays three games (Chess, Shogi, Go) with the same
hyperparameters.

24/24

Alpha Zero (Silver et al., 2017)

Videos of representative games on YouTube

