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Regression

Supervised learning problem
Training set: N points (xi , yi ), xi ∈ Rn, yi ∈ R, i = 1, ...N.
Aim: approximate the equation f : Rn 7→ R underlying the data with
a model ŷ(x; w) using parameters w ∈ Rn:

ŷi = ŷ(xi ; w)≈ f (xi )

Learning problem: Find w such that we minimize the residuals ∆:

ŵ = argmin
w
‖∆‖

defined by
∆i = yi − ŷ(xi ; w).
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ŵ = argmin
w
‖∆‖

defined by
∆i = yi − ŷ(xi ; w).
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Regression
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Example: Fit data with linear function ŷ(x) = w1 + w2x by finding the
parameters w = (w1,w2).
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Regression
Specification of the learning problem

We define ‖∆‖ using the p-norm of ∆ ∈ Rn:

‖∆‖p =

(
n
∑
i=1
|∆i |p

)1/p

,

Choice of p determines the type of regression problem:

p Learning Problem Name
1 minw∑

n
i=1 |∆i | L1 (linear) optimization

2 minw∑
n
i=1 ∆2

i Least squares (Gauss ∼1800)
∞ minwmaxi ∆i Tschebyscheff regression
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Loss function
Least-squares regression

Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X, Y, θ).

X ∈ RN×n is the matrix of N input data points or features. A feature
has n dimensions.
Y ∈ RN×l are the labels. A label has l dimensions.
The pair (X,Y) = (xi ,yi )i=1,...,N forms the training data.

Here we call θ = w. We consider univariate function regression, i.e.
the labels can be written as a vector y ∈ RN .
We choose the mean squared error as loss function:

C(X, y,w) =
1
N

N
∑
i=1

(yi − ŷ(xi ; w))2

Note that the mean squared error and the 2-norm√
C(X, y,w) = ‖y− ŷ‖2 have the same minimum.

Learning problem: seek w such that the loss function is minimal:

ŵ = argmin
w

N
∑
i=1

[yi − ŷ(xi ; w)]2

The prefactor N−1 has no influence on ŵ. 5/33
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Loss function
Least-squares regression

Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X, Y, θ).

X ∈ RN×n is the matrix of N input data points or features. A feature
has n dimensions.
Y ∈ RN×l are the labels. A label has l dimensions.
The pair (X,Y) = (xi ,yi )i=1,...,N forms the training data.

Here we call θ = w. We consider univariate function regression, i.e.
the labels can be written as a vector y ∈ RN .
We choose the mean squared error as loss function:

C(X, y,w) =
1
N

N
∑
i=1
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C(X, y,w) = ‖y− ŷ‖2 have the same minimum.

Learning problem: seek w such that the loss function is minimal:
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Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations yi are produced from ŷ(xi ; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal
distribution.

yi = ŷ(xi ; w) + ∆i ∆i ∼N (0, 1) =
1√
2π

e−∆2
i /2

We seek the maximum likelihood estimator ŵ = argmaxw L(X, Y,w)
with

L(X, Y,w) = P [y1 = ŷ(x1), ...,yN = ŷ(xN) |w] =
N
∏
i=1

1√
2π

e−
1
2 (yi−ŷ(xi ;w))2

This is equivalent with:
argmaxL(X, Y,w) = argmax logL(X, Y,w)

= argmax
N
∑
i=1
−1
2 (yi − ŷ(xi ; w))2− log

(√
2π

)
= argmin

N
∑
i=1

(yi − ŷ(xi ; w))2
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Linear Least Squares Regression
In a linear regression problem, the model has the form:

ŷ(xi ; w) = x>i w =
n
∑
j=1

xijwj

Matrix notation: ŷ = Xw. Linear least squares (LLS) regression
problem:

min
w
‖y−Xw‖22

Featurization: Starting from some initial data ri ∈ Rd , we define n
basis functions or feature functions φj : Rd → R. Thus every
datapoint is featurized:

ri → xi = (φ1(ri ), ...,φn(ri ))> .

Our linear regression model then has the form

ŷ(ri ; w) = w1φ1(ri ) + ...+ wnφn(ri )

with can be nonlinear in r.
Example: with φ = {1, r , r2} and w = (w1,w2,w3) we can fit a
quadratic function f (r) = w1 + w2r + w3r2. 7/33
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Linear Least Squares Regression
Normal equations

The vector w ∈ Rn is the solution to min‖y−Xw‖2 exactly if it fulfills
the normal equations

X>Xw = X>y

The linear regression problem has a unique solution exactly if the rank of
X is maximal, i.e. rk(X) = n.
Direct inversion (numerically unstable and inefficient):

w = (X>X)−1X>y = X+y.

where X+ is the Moore-Penrose pseudoinverse of X.
Defining the covariance matrices

CXX = X>X
CXY = X>y

(here CXY ∈ Rn×1, but it is a matrix if we have multiple regression
targets) the formal solution can be written as:

w = C−1XXCXY .
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Validation and hyperparameter selection

Validation: LLS solution gives us the in-sample training error:

Ein = C(Xtrain, ytrain, ŵ) =
∥∥ytrain−Xtrainŵ

∥∥
2 ,

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Eout:

Eout = C(Xval, yval, ŵ) =
∥∥yval−Xvalŵ

∥∥
2 ,

Hyperparameter selection: Hyperparameters cannot not be
obtained from the learning algorithm (here LLS). For example, the
number of type of feature functions φ .
Example: The type of function φ used for training cannot be
determined by minimizing the training error. For example, the model

ŷ(x) =
N
∑
i=1

wi1xi (x) with 1xi (x) =

{
1 x = xi

0 x 6= xi

has zero training error, but predicts f (x) = 0 for every point x not in
the training set. 9/33
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Underfitting vs. Overfitting

1

1From http://scikit-learn.org 10/33



Validation

Data-based validation is an effective way to solve the
hyperparameter selection problem:
Divide dataset into

training set (Xtrain,ytrain)
validation set (Xval,yval).

Learn parameters using the training set:

ŵ = argmin
w

∥∥ytrain−Xtrainw
∥∥
2

The resulting residual Ein =
∥∥ytrain−Xtrainŵ

∥∥
2 is the training error

or training loss.
The error of the learnt model in predicting data not used for the
training,

Eout =
∥∥yval−Xvalŵ

∥∥
2

is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data
Choose hyperparameters by minimizing the validation error.
(careful: selecting hyperparameters and computing Eout requires a
third test set or a more advanced validation routine). 11/33
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Underfitting vs. Overfitting
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Cross-validation

Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.
Methods to “shuffle” training and test data to reduce the bias from
the data splitting.
Cross-validation is a simple and widely used approach:

1 Split the data into k nonoverlapping folds (Xi ,yi ). The
complementary sets are (X−i ,y−i ).

2 For each fold i :
1 Train learning algorithm on training data:

ŵi = argmin
w

∥∥y−i −X−iw
∥∥
2

2 Compute validation error:

E i
out =

∥∥yi −Xi ŵi∥∥
2

3 Cross-validation error is then given by:

Eout =
1
k

k
∑
i=1

Ek
out.
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ŵi = argmin
w

∥∥y−i −X−iw
∥∥
2

2 Compute validation error:

E i
out =

∥∥yi −Xi ŵi∥∥
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Cross-Validation

1

1From https://en.wikipedia.org/wiki/Cross-validation_(statistics) 14/33



Statistical Estimator Theory
Example: Regression

We now explicitly distinguish between the true function f that is sampled
by a given set of observations (xi ,yi ):

yi = f (xi ) + ∆i ∆i ∼N (0, 1)

and the estimator ŷ(x; w).

Learning problem
Learn function f (x) by selecting function ŷ(x) from a hypothesis set H ,
which (in some sense) performs a best approximation ŷ ≈ f .

Prediction problem
How can the learning problem be meaningfully defined if f (x) can, in
principle, take any value on unobserved inputs?

Answer: a meaningful definition of learning is that the fitted model will
perform approximately as well in predicting unseen data as it did in
approximating training data (Ein ≈ Eout).
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Statistical Learning Theory
Ein, Eout, Bias and Variance for a given Model as a Function of N

1

We assume that the true function f is sufficiently complicated so that we
cannot learn it exactly, i.e.

N
∑
i=1

(f (xi )− ŷ(xi ; w))2 > 0 ∀w

Even in the limit N → ∞ we maintain an asymptotic error Ein = Eout,
called the model bias → property of the function class H .

1From Mehta et al, arXiv:1803.08823v1 16/33



Statistical Learning Theory
Ein, Eout, Bias and Variance for a given Model as a Function of N

1

Typical behavior:
After quick initial drop (not shown), Ein increases with N towards
the model bias.
Eout decreases with increasing N as more cases are observed and
thus covered by the model.
The generalization gap Eout−Ein (due to overfitting) decreases
with increasing N.

1From Mehta et al, arXiv:1803.08823v1 17/33



Statistical Learning Theory
Ein, Eout, Bias and Variance for a given Model as a Function of N

1

Insights:
It is not sufficient to minimize Ein, as Eout may be large. →
regularization.
As the true bias is not practically available, one minimizes Eout.

1From Mehta et al, arXiv:1803.08823v1 18/33



Statistical Learning Theory
Bias-variance tradeoff

1

Bias-variance tradeoff: The more/less expressive the model, the
larger/smaller the fluctuations, respectively.
To minimize Eout, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.
Asymptotically, i.e. with increasing size of the training set, complex
models will perform better than simpler models as they have reduced
bias.
Optimal model selection depends on the amount of training data.

1From Mehta et al, arXiv:1803.08823v1 19/33
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Bias-Variance decomposition
Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f :

Eout = C(Xval, yval, ŷval) =
∥∥yval− ŷval∥∥2

2 ,

where Xval = (xval
1 , ...,xval

N )> are the features of the validation set, yval are
the corresponding observations and ŷval are the predictions of the
estimator.
Idea: Compute expected Eout of given estimator ŷ on all data
y = f (x) + ε drawn from the true model f (x) with following approach:

1 Fix observation points xi
2 Repeat:

1 Run experiment, observe training data (X,ytrain) = (xi ,y train
i )i=1,...N

and train the estimator ŷ(x).
2 Repeat experiment, observe validation data

(X,yval) = (xi ,yval
i )i=1,...N .
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Bias-Variance decomposition

E

[
N
∑
i=1

(
yval

i (xi )− ŷ(xi )
)2]

= E

[
N
∑
i=1

(
yval

i (xi )−f (xi ) + f (xi )− ŷ(xi )
)2]

=
N
∑
i=1

Eyval

[(
yval

i (xi )− f (xi )
)2]︸ ︷︷ ︸

=Eyval [ε2]=σ2
ε

+
N
∑
i=1

Eytrain

[
(f (xi )− ŷ(xi ))2

]
+2

N
∑
i=1

Eyval [yi − f (xi )]︸ ︷︷ ︸
=EXval [ε]=0

Eytrain [f (xi )− ŷ(xi )]

=
N
∑
i=1

σ
2
ε︸︷︷︸

Noise

+Eytrain

[
(f (xi )− ŷ(xi ))2

]
︸ ︷︷ ︸

Estimator error 21/33
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Bias-Variance decomposition
Decomposition of the estimator error:

E
[
(f (xi )− ŷX(xi ))2

]
= E


f (xi )−E [ŷ(xi )]︸ ︷︷ ︸

a

+E [ŷ(xi )]− ŷ(xi )︸ ︷︷ ︸
b


2

= E
[
a2
]

+E
[
b2]−2E [ab]

The mixed term disappears (abbreviating ȳi = E [ŷ(xi )]):
E [ab] = E [(f (xi )− ȳi )(ȳi − ŷ(xi ))]

= E [f (xi )ȳi ]− f (xi )E [ŷ(xi )]− ȳ2
i + ȳiE [ŷ(xi )] = 0

The square bias E
[
a2
]
is the asymptotic estimation error in the infinite

data limit from the true value:

E
[
a2
]

= Bias2 =
N
∑
i=1

(f (xi )−E [ŷ(xi )])2

The variance E
[
b2] is the estimator’s fluctuation due to finite-sample

effects:

E
[
b2]= Var =

N
∑
i=1

E
[
(ŷ(xi )−E [ŷ(xi )])2

]
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+E [ŷ(xi )]− ŷ(xi )︸ ︷︷ ︸
b


2

= E
[
a2
]

+E
[
b2]−2E [ab]

The mixed term disappears (abbreviating ȳi = E [ŷ(xi )]):
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Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

Eout = E

[
N
∑
i=1

(
yval

i (xi )− ŷ(xi )
)2]

= Bias2 + Var + Noise.

The optimal model minimizes the expected loss by balancing bias
and variance.
A model is underfitting the data if bias is too high.
A model is overfitting the data if variance is too high.
Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.
Optimal choice depends on the amount of data available. The more
data, the more complex models are optimal.
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Statistical Learning Theory
Ein and Eout as a function of model complexity

Model complexity is a property of the function class H . For
example, model complexity increases with the number of free
parameters (e.g. higher-order polynomials are more complex than
the linear model).
Behavior for fixed N:

1

Eout is typically minimal for intermediate complexity. Low-complexity
involves a large training error, overly complex models involve large
prediction errors due to overfitting.

1From Mehta et al, arXiv:1803.08823v1 24/33
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Statistical Learning Theory
Analyze bias

We assume a linear model f (x) = x>w, and use the least squares
regression estimator:

ŵ = (X>X)−1X>y
Then the bias of a single sample point xi is:

Bias = f (xi )−E [ŷ(xi )]

= x>i w−E
[
x>i (X>X)−1X>y

]
Using the observation model in matrix form, y = Xw+ ε, and exploiting
EX [ε] = 0 shows:

Bias = x>i w−E
[
x>i (X>X)−1X>(Xw+ ε)

]
= x>i w−E

[
x>i (X>X)−1X>Xw+x>i (X>X)−1X>ε)

]
= x>i w−E

[
x>i w+x>i (X>X)−1X>ε

]
= x>i w−x>i w−x>i (X>X)−1X>E [ε]

= 0

Thus the least squares estimator ŵ = (X>X)−1X>Y is unbiased! 25/33
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Statistical Learning Theory
Analyze variance

Then the variance of a single sample point xi is:

Var = E
[
(ŷ(xi )−E [ŷ(xi )])2

]
Using again the linear model f (x) = x>w with the least squares
regression estimator:

ŵ = (X>X)−1X>y
and use the unbiased estimator result EX [ŷX(xi )] = x>i w, we have:

Var = E
[(

x>i (X>X)−1X>y−x>i w
)2]

Using the observation model in matrix form, y = Xw+ ε:

Var = E
[(

x>i (X>X)−1X>(Xw+ ε)−x>i w
)2]

= E
[(

x>i w+x>i (X>X)−1X>ε−x>i w
)2]

= E
[(

x>i (X>X)−1X>ε

)2]
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Statistical Learning Theory
Analyze variance

Using a2 = aa> if a is a scalar:

Var = E
[(

x>i (X>X)−1X>ε

)(
x>i (X>X)−1X>ε

)>]
= E

[
x>i (X>X)−1X>εε

>X(X>X)−1xi
]

= x>i (X>X)−1X>E
[
εε
>
]
X(X>X)−1xi

where we have exploitet that X>X is a symmetric matrix.
The only component in this expression that depends on the data
averaging is εε>. Writing E

[
εε>

]
= σ2

ε I, where I is the identity matrix
and cancelling terms gives:

Var = σ
2
ε x>i (X>X)−1xi
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Statistical Learning Theory
Analyze variance

We use a principal component decomposition of the data

1
NX>X = UΣ2U>

where the eigenvectors
U = [u1, ...,un]

are the principal vectors (normalized as u>i ui = 1) and the eigenvalues

Σ2 = diag(σ
2
X1, ...,σ

2
Xn)

are the variances of the data along the principal vectors.
Then the estimator variance is:

Var =
σ2

ε

N x>i UΣ−2U>xi

=
σ2

ε

N

n
∑
k=1

x>i uk
σ2

Xk
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Statistical Learning Theory
Analyze variance

If we assume σ2
Xk ≡ 1, then we have:

Var =
σ2

ε

N

n
∑
k=1

x>i uk

Now we compute the expected variance, assuming that xi is also from
N (0, I). As a result,

E
[
x>i uk

]
= 1

for any uk with u>k uk = 1, and thus:

E [Var] = E

[
σ2

ε

N

n
∑
k=1

x>i uk

]
= σ

2
ε

n
N

Gauss-Markov Theorem: The ordinary least squares estimator
ŵ = (X>X)−1X>y has the minimum variance among all unbiased
linear estimators. It is thus called the best linear unbiased estimator
(BLUE).
This does not mean this estimator will have the minimum expected
loss Eout - a biased estimator may have lower Eout for finite training
data. 29/33
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ŵ = (X>X)−1X>y has the minimum variance among all unbiased
linear estimators. It is thus called the best linear unbiased estimator
(BLUE).
This does not mean this estimator will have the minimum expected
loss Eout - a biased estimator may have lower Eout for finite training
data. 29/33



Statistical Learning Theory
Analyze variance

If we assume σ2
Xk ≡ 1, then we have:

Var =
σ2

ε

N

n
∑
k=1

x>i uk

Now we compute the expected variance, assuming that xi is also from
N (0, I). As a result,

E
[
x>i uk

]
= 1

for any uk with u>k uk = 1, and thus:

E [Var] = E

[
σ2

ε

N

n
∑
k=1

x>i uk

]
= σ

2
ε

n
N

Gauss-Markov Theorem: The ordinary least squares estimator
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Practical workflow

For complex estimators (e.g. neural networks), exhaustive
hyperparameter search is unfeasible.
Typical approach:
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Regularization
Regularized LLS: add penalty term on w with suitable norm:

min‖y−Xw‖22 + λ ‖w‖ .

Purpose:
Statistical: reduce expressiveness of model by reducing fluctuations
of w. Allows to control the bias-variance tradeoff via λ .
Numerical: regularized solutions often numerically better behaved.
Structural: e.g., induce sparsity in solution.

Regularization method depends on penalty type:
Regularization type Penalty term Prior Solution methods

Tikhonov regularization
Ridge regression

‖w‖22 Normal Closed form

Lasso regression ‖w‖1 Laplace Proximal gradient descent
l0 regularization ‖w‖0 - Forward selection,

Backward elimination
Elastic nets (1−α)‖w‖1 +

α ‖w‖2

- Proximal gradient descent
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L2 (Ridge) Regularization
We would like to work in high-dimensional feature spaces

ri → xi = (φ1(ri ), ...,φn(ri ))> .

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

min‖y−Xw‖22 + λ ‖w‖22 ,

where λ is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

w =
(

λ I+X>X
)−1

X>y

= C̃−1XXCXY

This is equal to the direct solution of the normal equations, only that we
use the so-called shrinkage estimator for the covariance matrix:

C̃XX = λ I+X>X
32/33
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Sparsity-inducing Regularization

L0 regularization

min‖y−Xw‖22 + λ ‖w‖0 ,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.
L1 regularization, e.g. using the least absolute selection and
shrinkage (LASSO) method.

min‖y−Xw‖22 + λ ‖w‖1 ,

Elastic net

min‖y−Xw‖22 + λ

[
(1−α)‖w‖1 + α ‖w‖22

]
,

Where α switches between the two extremes α = 0 (L1
regularization) and α = 1 (Ridge regression).
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