Convolutional Neural Networks

F. Noé!

Deep Learning Classes, FU Berlin 2018

1/28

ConvNets
LeCun 1989

e Convolutional neural networks (ConvNets, CNNs), have a special
network architecture that is suitable for exploiting invariances, e.g.
translational invariance.

@ Traditional CNNs are suited for data with a grid-like topology, e.g.:
discretized time-series such as audio (1D), pixelated images (2D)

@ In neural networks, convolutions are typically used in conjunction
with a nonlinear transform (detector layer) and a pooling layer:

/l\

Pooling Layer Compresses image

T

Detector Layer Nonlinear transform

T

Convolution Layer Affine transform

T

2/28

ConvNets
LeCun 1989

@ Mathematical basis: convolution operation
ﬂbﬁ:@*wxby:[fx@pmbf@da
@ Discrete convolution:
yi = (xxw) ZXJW, J—ZWJX, Y

Here we have used that convolution is commutative:
X*W = W * X

@ Here we call:
e Xx input
o w kernel
e y output or feature map

3/28

ConvNets
LeCun 1989

e Convolution is a linear operation. Example: x € R® and w € R3. As
the j-sum can only run from 2 to 4, we get three equations for y:

.
Yo = wixy + waxo + waxz = (wi, wa,ws,0,0) ' x
T
y3 = Woxo + wax3 + waxs = (0, wy, wo, w3,0) ' x
.
ya = w3x3 + waxg + wsxs = (0,0, wy, wz,w3) x

@ Convolving x € R” with w € R, m < n can be written as linear

operation
y = Wx

with W € R"~m+1X7 being a Toeplitz matrix:
g P
W]_ e WITI
W =
w1 e Wm
Assume that index j cannot go outside indices of input x —
J g

convolved output y will have reduced dimension n—m+1. In

practice, we often use zero padding. 4/28

@ Multidimensional convolution, e.g. 2D:

Y,J = (K*X ij = szlfmd nKmn

e Many ML libraries use cross-convolution (almost identical to
convolution, just with flipped indices):

Yi=(XxK)j =L Y. XitmjsnKmn
m n

5/28

ConvNets

Example

Input
Kernel
b c
w z
y z
I_Ii ’ *
v Output
aw + br + bw + cx + cw + dzr +
ey + fz fy + gz gy + hz
ew + fr + fw + gz + gw + hz +
iy + jz jy + kz ky + Iz
1

6/28
1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

Motivation: Sparse interactions, parameter sharing, equivariance

@ Sparse connectivity — makes computations faster

@ Each input dim. only affects some output dims.

o Limited receptive field: Each output only depends on some inputs.
°

In deep CNNS, units of later layers can still receive the entire input.

7/28

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

Motivation: Sparse interactions, parameter sharing, equivariance

ONONOEOXO
SEEE
©1010)020)

@ Conv Layer: Same parameters are used everywhere in the image.
Reduces storage requirements and training problem.

o Dense Layer: No parameter sharing, many more degrees of
freedom.

@ Essential for image processing. Example: Input 512 x 512 image has
262144 pixels. A dense layer to an output of similar size would have

68 x 10° parameters.
8/28

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

e Conv Layer:

o Kernel K has 2 elements
o Requires 319 x 280 x 3 =267,960 FLOPs (2 mult. + 1 add. per
output)

o Dense Layer:

o 320 x 280 x 319 x 280 = 8.028 x 10% matrix entries
o 15.056 x 10° FLOPs

LFrom Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

9/28

Motivation: Sparse interactions, parameter sharing, equivariance

e Function f is equivariant to a function g if f(g(x)) = g(f(x)) — if
the input changes, the output changes in the same way

X £ X
fl fFl

y £ vy

o f is convolution with kernel K, f: Y =K% X
o g is translation: X' = g(X), X,-’j =Xi—ujv-
e Equivariance: g(KxX) = Kxg(X)
@ Note: Equivariance does not automatically hold on the image
boundary — zero-padding.
@ Convolution creates a 2-D map of where certain features appear in
the input. Shifting input — same shift in output.
@ Convolution is not intrinsically equivariant to other transformations,
e.g. rotation or scaling. 10/28

Zero padding

PN

009 HOOOOOOOOOOOOOOCL e

'%CL%OOOOOOOOOOO% &
ﬁi&zzzzzzzzzﬁi&

@ Top: without zero padding, image size is reduced upon convolution.

@ Bottom: with zero padding, image size stays constant.
11/28

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

Zero padding

e without zero padding:
o Image size is reduced upon convolution.
o Often called valid convolution in algebra packages
o Shrinking spatial extent of network rapidly or using small kernels —
limits expressive power of network.
o with zero padding:
o Image size stays constant — arbitrarily deep CNNs can be used.
o Allows us to control the kernel width and the size of the output
independently.
e same convolution: enough zeros are padded to make output size
equal to input. Can result in underrespresentation of border pixels.
o full convolution: enough zeroes are added for every pixel to be
visited k times in each direction, resulting in an output image of
width m+ k — 1. Output pixels near border are a function of fewer
pixels than output pixels near center.

12/28

@ Reminder:

T

Pooling Layer Compresses image

T

Detector Layer Nonlinear transform

T

Convolution Layer Affine transform

T

o Examples:
o max pooling of a rectangular neighborhood (Zhou and Chellappa,
1988), e.g. 2 x 2 filter with stride 2:

1 3

8
—
0 3 4
4

N = o o
N = O N

4
3
1 1
o average of a rectangular neighborhood
e L2 norm of a rectangular neighborhood 13/28
o weighted average based on the distance from the central pixel.
1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

@ Using stride > 1 significantly reduces the size of the output —
reduce memory and CPU requirements.

@ Pooling useful for handling inputs of different sizes. Offsets can be
varied such that the classification layer always receives the same
number of summary statistics regardless of the input size.

o Example: final pooling layer of the network may be defined to
output four sets of summary statistics, one for each quadrant of an
image, regardless of the image size).

@ Pooling over spatial regions makes representation approximately
invariant to small translations at input (most pixels of Y do not
change upon small translations of X) — useful to detect whether a
feature is present rather where it is.

14/28

POOLING STAGE

DETECTOR STAGE

POOLING STAGE

DETECTOR STAGE 1

Example: each input pixel has changed, but only half of the output pixels
have changed.

15/28

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

By pooling over separate convolution, the features can learn which

transformations to become invariant to:
in pooling unit,

Targe response
in pooling unit
Large
in detector

S| | hl||& <;i3
\{TD/‘ Nt/

nll 1

Large

@ Which pooling should | use? (Boureau et al., 2010).
@ Dynamical pooling (Boureau et al., 2011).
o Adaptive pooling (Jia et al., 2012).

16/28

1From Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

Convolution as infinitely strong prior

@ Reminder: Prior distribution — probability distribution over model
parameters encoding assessment of likely models before having seen
any data.

@ Weak prior: high entropy, e.g. Gaussian with high variance allows
data to move parameters more or less freely.

@ Strong prior: low entropy, e.g. Gaussian with low variance —
strongly restricts the parameter values.

o Infinitely strong prior: places zero probability on some parameter
values.

@ Convolutional layer: similar to densely connected layer, but:

o weights for one hidden unit must be identical to the weights of its
neighbor, but shifted in space

o enforcing that with zero probability on parameters outside receptive
field.

17/28

Multi-channel convolution

Input has usually multiple channels (e.g. RGB for images).

Images: input X and output Y are 3d tensors

(channel x i pos x jpos).

Software: usually use batches and 4d tensors

(batch — index x channel X i pos X j pos)

For multi-channel convolution, linear operations are not guaranteed
to be commutative, unless each operation has the same number of
input and output channels.

Multi-channel convolution: 4d Kernel K with Kj; « j: connection
strength between a unit in channel i of output and a unit in channel
j of input, with offset of k rows and | columns between the output
unit and the input unit.

Yi,j,k = Z X/,j+m71,k+n71Ki.l,m,n
I,m,n
where |, m, n sums over all valid indices.

To reduce computational cost, it is possible to use a stride in the ~ 18/28
convolution operation.

Locally connected layers

@ Also called unshared convolution (LeCun, 1986, 1989)

@ adjacency matrix in the graph of our MLP is the same, but every
connection has its own weight, specified by a 6-D tensor W with
indices: output channel, row, column i,j, k, input channel, row
offset, column offset /, m, n:

Yijk =Y, Xijsm—1krn-1Wijktmn
I,m,n

o useful when a feature is a function of a small region, but not
independent of where it is in the picture.

19/28

Tiled convolution

@ Compromise between a convolutional layer and a locally connected
layer

@ Rather than learning a separate set of weights at every spatial
location, we learn a set of kernels that we rotate through as we
move through space.

@ Neighboring locations have different filters, as in locally connected
layer, but memory requirements for parameters increase only by a
factor of the size of this set of kernels

NGNS
\8\%{

20,28

IFrom Goodfellow, Bengio and Courville: Deep Learning, MIT Press (2016)

’ \ Single channel \ Multi-channel ‘
1d | Audio waveform Skeleton animation data
2d | Grayscale image Color images
3d | Volumetric data (CT, MRI) | Color video

21/28

Efficient Convolution Algorithms

@ Convolution can be implemented using fast Fourier transform:
KX =7 HZF(K)o.Z(X))

where ® is point-wise multiplication and .%, .# 1 are forward and
inverse Fourier transform — efficient for large images/kernels.

@ When a d-dimensional kernel K can be expressed as the outer
product of d vectors, e.g.,

K=uv',

K is called separable. Convolution with K can then be composed by
d one-dimensional convolutions with each of these vectors.

A kernel with w elements and d dimensions requires generally
O(Wd) runtime and parameter storage space, but only requires
O(wd) runtime and parameter storage space when separable.

@ Developing faster ways (algorithmic and hardware) to perform
convolutions is an active area of reasearch. 22/28

Random and unsupervised features

@ Most expensive part of ConvNet training is learning the features.
Conv layers are usually much larger than output layer due to pooling.

@ ConvNet training cost can be reduced by using features that are not
trained with supervised learning.
@ Three strategies:
© Random features: often work surprisingly well in CNNs (Jarrett et
al., 2009; Saxe et al., 2011; Pinto et al., 2011; Cox and Pinto, 2011).
© Manually designed features
© Unsupervised features:

o Greedy layer-wise pretraining, train first layer in isolation, then
extract all features from the first layer only once, then train second
layer in isolation given those features, and so on.
o Convolutional deep belief network (Lee et al., 2009)
o Coates et al. (2011): k-means clustering to small image patches,
then use each learned centroid as a convolution kernel. Can train
very large models, full computational cost only at inference time.
o Approach popular in 2007-2013, when labeled datasets were small
and computational power was more limited. 23/28
e Today, most convolutional networks are trained purely supervised.

ConvNets vs mammalian vision

@ Pioneering neuroscientists: Hubel and Wiesel (1959, 1962, 1968):

o Discrovered basic functionality of mammalian vision system by
recording individual neuron activity in cats.

o Neurons in the early visual system respond mostly to specific
patterns of light, such as precisely oriented bars.

@ Primary visual cortex (V1): first brain area that performs advanced
processing of visual input — inspires ConvNets

o V1 is arranged in 2d spatial map, mirroring the image in the retina.
— inspires 2d structure of ConvNets.

o V1 simple cells respond approximately linearly to a small, spatially
localized receptive field.
— inspires ConvNet detector units

o Most simple cells seem to perform convolutions whose weights are
described by Gabor functions.

24/28

Gabor functions:

ConvNets vs mammalian vision

w(x,y: & B, By, F, 9,0, Y0, T) = atexp P BV cos (Fx + ¢)

dadadESESEER
Addd=ESESERR
AAAESRNRNN
MNAZANNNND
(O [0 AW SN 2 2
uNSSEZzEn
SNNSSs=EEEv
SNNS=EEEEY

—~~

x —xo) cos(T) + (v — yo)sin(7)
¥ = ¥0)cos(7) — (x — xo)sin(7)

— many learning algorithms, include ConvNets, learn Gabor-like features
when applied to natural images

ConvNets vs mammalian vision

@ V1 complex cells respond to features as simple cells, but invariant
to small position shifts
— inspires pooling units.
invariant to some changes in lighting
— inspires cross-channel pooling.

@ Assumption: basic strategy of detection and pooling is repeated in
deeper brain layers.

e Grandmother cells (concept): a neuron that activates when a
person sees an image of their grandmother, regardless of position in
the image, close-up or full-body short, brightly lit or in shadows etc.
— have been shown to exist in the medial temporal lobe in the
human brain (Quiroga et al., 2005).

e Halle Berry neuron (concept): an individual neuron that is
activated by the concept of Halle Berry (seeing a photo or a drawing
of Halle Berry, or reading text “Halle Berry")

26,28

ConvNets vs mammalian vision: Differences

@ Human eye mostly low resolution, except for a tiny patch, with a
size of a thumbnail held at arms length (fovea). Perception to see
an entire scene in high resolution is an illusion stitched together
from glimpses of small areas.

@ Visual models with foveation mechanisms have been developed but
so far have not become the dominant approach (Larochelle and
Hinton, 2010; Denil et al., 2012).

@ The human visual system is integrated with many other senses, such
as hearing, and factors like our moods and thoughts. Convolutional
networks so far are purely visual.

@ Human visual system does much more than just recognize objects. It
is able to understand entire scenes including many objects and
relationships between objects (see Capsule networks).

@ Simple brain areas like V1 are heavily impacted by feedback from
higher levels.

@ Brains cells are much more complicated and diverse than artificial
neurons.

27/28

Random and unsupervised features

@ Neural network research group at AT&T developed a CNN for
reading checks (LeCun et al., 1998b). By the end of the 1990s, this
system deployed by NEC was reading over 10% of all the checks in
the US.

@ Several OCR and handwriting recognition systems based on CNNs
were deployed by Microsoft (Simard et al., 2003).

@ Current intensity of commercial interest in deep learning began when
Krizhevsky et al. (2012) won the ImageNet object recognition
challenge.

@ Convolutional nets were some of the first working deep networks
trained with back-propagation.

28,28

