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Generative Neural Networks
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Differentiable Generator Nets

o ldea: Learn to sample intractable p(x) by sampling tractable latent
distribution
z~p(2)

and perform a linear transformation to a desired distribution:
x = G(z,0) ~ p(x).

@ Architecture of G defines family of possible p(x) distributions.
Parameters 0 select distribution from that family

o Simple Example: standard procedure for drawing samples from a
normal distribution with mean p and covariance X:
@ Sample: z~ A47(0,1)
@ Transform: x= G(z) = pt + Lz, where ¥ = L' L (Cholesky
decomposition).
e Simple Example: sampling a univariate distribution p(x) with
cumulative distribution function g(x) = [*_ p(v)dv:
@ Sample z ~ Uniform(0, 1)

@ Transform x = G(z) = g~ (2). 3/36



Generative Neural Networks

o ldea: Learn to sample intractable p(x) by sampling tractable latent
distribution
z~ p(z)
and perform a linear transformation to a desired distribution:

x = G(z,0) ~ p(x).

o Example:
o Left: Samples from normal distribution, z ~ .4#(0,1).
z

o Right: Samples mapped through G(z) = {5 + 1 to form a ring.
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Differentiable Generator Nets

o ldea: Learn to sample intractable p(x) by sampling tractable latent
distribution
z~p(2)

and perform a linear transformation to a desired distribution:
x = G(2,0) ~ p(x).

@ Complex Distribution:

o G feedforward neural network

e train parameters 6 to sample from correct distribution.
@ Well-known neural network architectures:

e Variational Autoencoders (inference net + generator net)
o Generative Adversarial Networks (generator network +
discriminator network)
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Reminder: Autoencoders

p ~
smile: 0.99

Skin tone: 0.85
Gender: -0.73

encoder decoder
Beard: 0.85

Glasses: 0.002

Hair color: 0.68

N /

Latent attributes

Latent variables encode “essential” information about data points x.
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Variational Autoencoders (VAEs)

Variational Autoencoder (VAE) — Kingma, 2013; Rezende et al., 2014

@ Instead of a single value for each attribute, represent each latent
attribute as a range of possible values.

o E.g., what single value would you assign for the smile attribute if
you feed in a photo of the Mona Lisa?

@ VAE: describe latent attributes in probabilistic terms.

Smile (discrete value) Smile (probability distribution)
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Variational Autoencoders (VAEs)

Variational Autoencoder (VAE) — Kingma, 2013; Rezende et al., 2014

@ Directed model that uses learned approximate inference and can be
trained purely with gradient-based methods.

@ Represent each latent attribute for a given input as a probability
distribution.

@ When decoding from the latent state, randomly sample from latent
state distribution to generate a vector as input for decoder model.
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Latent attributes
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Variational Autoencoders (VAEs)

Variational Autoencoder (VAE) — Kingma, 2013; Rezende et al., 2014

@ Encoder: define probability distribution of latent variables
e Sample: latent variables z given the encoding of input x
@ Decode: z so as to reconstruct corresponding input x.
@ Enforces a continuous, smooth latent space representation.
@ Values which are nearby to one another in latent space should
correspond to similar reconstructions.
(Smile: 023
‘,/"’ :\ \\\ Skin tone: 0.02
Smile: F ! H Gender: 0.18
Skin tone: ‘—O—A—W Beard: 0.71 ecoder
' f! ¢ ! Glasses: -0.19
encoder Gender: ! o N { Haircolor:0.33
Beard ’.—.—A» (‘smile; 017
’ Skin tone: 0.28
Glasses: «—2‘ &4—6‘“ + Gender: 0.11 decoder
Hair color: 00—0—1\—» Beard: 0.66
\ ; ! ' J/ Glasses: 0.14
S— — We expect an accurate
\Hair calor:0.26 reconstruction for any
Latent distributions Sampled latent attributes sample from the latent

state distributions 9/36



Variational Inference

@ Variables x are visible but z are hidden — we need to infer the
characteristics of z from x:

p(x | z)p(z)

Pl ) ="

@ But computing p(x) is extremely difficult:

p(x) = [ plx | 2)p(z)dz

@ Approaches:

e Markov-Chain Monte Carlo (no bias, but high variance)
o Variational inference (bias, no variance)

e Variational inference idea: approximate p(z | x) by a tractable
distribution g(z | x; ) by optimizing parameters 6 and then perform
inference with g.
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Kullback-Leibler Divergence

o Kullback-Leibler divergence (KL-divergence or relative entropy)
between two distributions p(x) and g(x) measures the dissimilarity
between the two distributions:

DxL(qllp) = /q(X)log E ;dx

o Interpretation: Expectation w.r.t. q of the logarithmic difference
between the two distributions p and q.
o Properties:
o Nonnegativity: Dki.(q || p) > 0 with equality if and only if p=gq (in
the sense of probability distributions)

o Dxi(q |l p) # Dkr(p || g) — the KL-divergence is not symmetric in its
arguments.
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Variational Autoencoders

Variational Free Energy vs. Evidence Lower BOund (ELBO)

@ Goal: Ensure that tractable distribution g(z|x) is similar to
intractable distribution p(z|x).

@ Means: minimize KL divergence

a(z|x)
bz %)

Dk (gl p) = Dxr(a(z [ ¥) | P(Z|X))=/Zq(2|><)|0g

@ Direct computation is not possible because:

Sy = P(x2)
PIx) == 05

p(x) = [ p(x.2)dz

Is intractable. — We cannot directly compute Dk (q || p). Can we
find another way to minimize Dkp, (g || p) without knowing its value?
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Variational Autoencoders

Variational Free Energy vs. Evidence Lower BOund (ELBO)

o Using p(z | x) = p(x,2)/p(x):

. a(z |
Di(a 1) = [ alz|x)log 775z

— [t o (L2 50 ) oz

@ Using Properties of the log and splitting the integral:

Dxi(q | p) /q | x) [log (( ‘ ))+|ogp( )] dz
q(z| x)

_/q |x[|og )}dz+logp /q | x)dz

e Exploiting that g is a probability distribution [, g(z) = 1:

Dxi(q || p) = /q | x) [log (( z|x ))]derlogp( )

L
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Variational Autoencoders

Variational Free Energy vs. Evidence Lower BOund (ELBO)

o KL divergence

Dxi(q || p) = L+logp(x)

e Variational free energy (upper bound to —log p(x)):

L= [atel) {'°g 1((1!:))] dz

e —L: Variational Evidence Lower BOund (ELBO):

—L =logp(x) — DkL(q || p) < logp(x)

@ Since p(x) is a constant in z we can minimize Dgr(q || p) by
minimizing the variational free energy or maximizing the ELBO:

argmin Dg.(q || p) = argmin L = argmax —L
14/36



Variational Autoencoders

Variational Free Energy vs. Evidence Lower BOund (ELBO)

e Using p(x,z) = p(x | z)p(2):

@ Using properties of the log:

T

L= [ a(zlx)log
z
@ Interpreting these terms:

L= Dxi(a(z|x) [| p(2)) = Ezng(zix) log p(x | 2)

o We assume that g has a tractable form (e.g. factorizes) 15/36



Variational Autoencoders
Structure

p(x\z)l Pzl x
Neural network Neural network

We'd like to use our mapping x to z. mapping z to x.
observations to

understand the hidden
variable.

i

Latent space
representation.

min {_EZNq(z\x) Ing(x | Z) + DKL(q(Z | X) || p(Z))}

e Encoder g(z | x) (inference network, recognition model):

o Maps to latent space

o Models approximate posterior distribution g.

o Zk1[q(z | X) || Pmode1(2)] tries to make q(z | x) and pmoge1(z) similar.
e Decoder p(x | z).

o Decodes z — X with the aim to reconstruct the input x.

o E,q(z|x) 108 Pmodel (X | 2) reconstruction log-likelihood
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Gaussian VAE
Structure

Define
latent state
distributions

Mean Sample from

a J\)o distributions l// :
\x | N
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Gaussian VAE

Explicit Solution for Regularization Loss (KL-divergence)

@ Ansatz: isotropic Gaussian generative model:

q(z|x) = (z M(X),diag(cz(X)))
1

2
Xi — Hi
\/ﬂH, 1Glexp[_2i_zi( Oi )‘|

and standard normal latent variables:

p(z) = A (0.1)

@ We can compute Dgi.(q(z | x) || p(z)) explicitly:

Diaafz %) | p(z)) = [ az | x)og 27 oz

1 d
=3 Z‘ (1+log 67 (x) — uf (x) — 67 (x))

18/36
@ This loss can be easily computed.



Computing the Reconstruction Loss
Reparametrization Trick

@ Let us write the loss explicitly with parameters:
L= _EZNq(le) log p(x | Z; Odec) + DxL(q(z | X, Benc) || P(2))
@ Computing reconstruction loss involves a sampling of hidden

variables z.

@ In stochastic gradient descent, it is natural to replace expectation by
a single sample for each x:

log p(x | Z; Odec) ~ Ezq(z|x) 08 P(X | Z; Odec)

@ However, the process of sampling a pdf itself is not differentiable. In
order to compute derivatives, we use the reparametrization trick:

@ Randomly sample € from a unit Gaussian
e~ A(0,1)
@ Shift € by mean and scale it by variance of the latent distribution:

z=u(x)+o(x)0¢e 19/36



Computing the Reconstruction Loss
Reparametrization Trick

decoder model decoder model

’Delermlmsucnade I
~q(zlx) z=p+aQe
. Random nede

:

60 o600~
I [

encoder model encoder model

Now we can optimize the parameters of the distribution while still
maintaining the ability to randomly sample from that distribution.

decoder model

Wi l 1

backprop R z=p+0cQ¢
2 AN
60 0

I

encoder model

20/36

Note: To avoid negative values for o, we can learn logo and take the



Computing the Reconstruction Loss
Evaluations Reconstruction Loss by Sample

@ For each sample pair x, z, evaluate:
log p(x | z; 0)

o Example: Binary MNIST
e Use binary images x; € {0,1},
o Use logistic (sigmoid) output layer in decoder to model
%i(x,0) = (p(x;) =1).
o Compute log-likelihood (see last lecture, logistic regression)

N
L(6)= Z x;jlog Xi(x,0) + (1 —x;)log[1 — Xi(x,0)]
i=1
o In practice often other reconstruction losses are used, e.g. ||x; f?(,-Hg.

@ There is a disconnect between the mathematical theory and common
implementations that are often based on trying to do something
similar as suggested by the intuitive interpretation of mathematics! 21/36
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Variational Autoencoders

MNIST VAE / Variational Autoencoder

min {~E,q(x 08 p(x | 2) + Dxe(a(z | X) | p(2))}

Only reconstruction loss

Penalizing reconstruction loss
encourages the distribution to
describe the input

Only KL divergence

Without regularization, our
network can “cheat” by learning
narrow distributions

Combination

Penalizing KL divergence
acts as a regularizing force

Attract distribution
to have zero mean

Our distribution
deviates from the
prior to describe
some characteristic
of the data

s 0 s
With a small
enough variance,
this distribution is
effectively only
representinga
single value

Ensure sufficient variance to
yield a smooth latent space

24/36



Gaussian VAE

Discussion

Define
latent state
distributions

Mean Sample from
distributions

’ Variance |

VAE advantages:
@ Structure is elegant, theoretically pleasing, and simple to implement.
@ Excellent results, among the state of the art approaches to
generative modeling.
@ Very robust — key advantage over Boltzmann machines, which
require extremely careful model design to maintain tractability.
@ Work very well with a diverse family of differentiable operators.

25,36



Gaussian VAE

Discussion

Define
latent state
distributions

Mean Sample from
1\ distributions

Y\ ¥

VAE disadvantages:
@ Image VAE samples tend to be blurry.

@ Maximizing a lower bound on the likelihood of such a distribution is
similar to training a traditional autoencoder with mean squared error

@ Tends to ignore small/local features of the input. 26/36
@ Current VAEs tend to use only a small subset of the dimensions of z.



SETES
DRAW: A Recurrent Neural Network For Image Generation (Gregor et al, 20

O]
L6 16 6101010000

Time >

Trained DRAW network generating MNIST digits. Each row shows successive stages
in the generation of a single digit. Note how the lines composing the digits appear to
be “drawn” by the network. The red rectangle delimits the area attended to by the 27/36

network at each time-step, with the focal precision indicated by the width of the
rectangle border.



SETES

DRAW: A Recurrent Neural Network For Image Generation (Gregor et al, 20

P(z|z) Ct—1—{ write i oo ~Cr—~{o-P(z|21.7)

decoding
sample sample (generative model)
f i i
Q(z|z) Q(zt|z, 21:0-1) \\|Q (2411, 21:4) :g?e?'e:::ge)

Left: Conventional Variational Auto-Encoder. Right: DRAW Network. At each

time-step a sample z; from the prior P(z;.7) is passed to the recurrent decoder

network, which then modifies part of the canvas matrix. The final canvas matrix ct is

used to compute P(x|z1.7) . During inference the input is read at every time- step and

the result is passed to the encoder RNN. The RNNs at the previous time-step specify

where to read. The output of the encoder RNN is used to compute the approximate
posterior over the latent variables at that time-step. 28/36



SETES
DRAW: A Recurrent Neural Network For Image Generation (Gregor et al, 2015)
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SVHN Generation Sequences. The red rectangle indicates the attention patch. 29/36
Notice how the network draws the digits one at a time, and how it moves and scales
the writing patch to produce numbers with different slopes and sizes.




SETES

Automatic Chemical Design using Variational Autoencoders (Gémez-Bombarelli et al, 20

SMILES input ©

|
ENCODER | eelereioieie 4 s
Property
Neural Network Ny [

CONTINUOUS v :
MOLECULAR &
REPRESENTATION fz)
(LatentSpace)

(F; PROPERTY

PREDICTION

DECODER

Neural Network
Most Probable Decoding

argmax p(*i2)

SMILES output

Interpolation. Starting from a discrete molecular representation, such as a SMILES
string, the encoder network converts each molecule into a vector in the latent space,
which is effectively a continuous molecular representation. Given a point in the latent
space, the decoder network produces a corresponding SMILES string.
Architecture:
@ Encode characters strings into vectors using recurrent neural networks (RNNs).
@ Encoder: 1D convolutional layers, fully-connected layer
@ Decoder: Three layers of gated recurrent unit (GRU) networks.
@ The last layer of the RNN decoder defines a probability distribution over all 30/36
possible characters at each position in the SMILES string (stochastic writeout)



SETES

Automatic Chemical Design using Variational Autoencoders (Gémez-Bombarelli et al, 20

Interpolation. Projection of the molecular training sets onto learned two-dimensional
latent spaces. The one-dimensional histograms show the distribution of the training
data along each dimension, overlaid with the Gaussian prior imposed in the variational
autoencoder. The points are colored along a chemical property that is relevant to
their function, and will be the target of optimization experiments. Left: A natural
library of drug-like molecules, colored by their predicted water-octanol partition
coefficient. Right: A combinatorially-generated library of organic LED molecules,
colored by their predicted delayed fluorescent emission rate (kTADF in us™1).

31/36



SETES

Automatic Chemical Design using Variational Autoencoders (Gémez-Bombarelli et al, 2016)

Interpolation. Molecules decoded from randomly-sampled points in the latent space 32/36
of a variational autoencoder, near to a given molecule (aspirin [2-(acetyloxy)benzoic
acid], highlighted in blue).



SETES

Automatic Chemical Design using Variational Autoencoders (Gémez-Bombarelli et al, 2016)

OF OOl T e e e
%%Q%A/K”vwmm%_k
OLOLOK - D o e~ T Ay
e R ———c s P P SN U PV
RO e B Y e~
R e tsie ECl | RSN SEUSNFRNTIR |
B e I TS UP DRSS (PSV U Bt o

. M@‘D’”W” s, A CQ_‘-JLA"mD».IL_‘

wa%mg AN S S B

B T N

Interpolation. Two-dimensional interpolation between four random drugs. Left:

Starting molecules, whose encodings defined the four corners of a place in the latent

space. Right: Decodings of linearly-interpolated points between the latent 33/36
representations of the four molecules to the right. /



SETES

Automatic Chemical Design using Variational Autoencoders (Gémez-Bombarelli et al, 2016)

Property
f(z}

Latent Space
z

39es

Most Probable Decoding ’,’_ )
argmax p{*|z) ’

Interpolation. Gradient-based optimization in continuous latent space. After training

a surrogate model f(z) to predict the properties of molecules based on their latent
representation z, we can optimize f(z) with respect to z to find new latent

representation expected to have high values of desired properties. These new latent
representations can then be decoded into SMILES strings, at which point their

properties can be tested emprically. 34/36



Project (Noé group)

Adaptive Markov Chain Monte Carlo (MCMC)

o Aim: Given p(x) o< e U™ as input, we want to sample x efficiently
using MCMC.
o Difficulty: Make efficient steps x; — x» that have a high acceptance
probability and cover a large distance d(x1,x2).
e Approach:
o Use neural network to learn complex proposal step x; — x2 in a way

that allows us to compute pycc(x1 — x2)
o Maximize efficiency

S(x1 = X2) = pacc(x1 — x2) d(x1,x2)

before training before training

after training after training

-2 005

S 35/36
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Project (Noé group)

Adaptive Markov Chain Monte Carlo (MCMC)

e Aim: Given u(x) o< e “™) as input, we want to sample x efficiently
using MCMC.
o Difficulty: Make efficient steps x; — xp that have a high acceptance
probability and cover a large distance d(x1,x2).
e Approach:
e Use neural network to learn complex proposal step x; — x2 in a way
that allows us to compute pycc(x1 — x2)
o Maximize efficiency

S(x1 = x2) = pacc(x1 — x2) d(x1,x2)

60 =0

compact extended
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extension move compaction move




