
1/30

Perceptrons and Neural Networks

F. Noé1

Deep Learning Classes, FU Berlin 2018

2/30

Artificial Neural Networks
Motivation

3/30

Artificial Neural Networks
Basic artificial neuron

Input vector x ∈ Rn

Trainable weights: w ∈ Rn and b ∈ R
Fixed nonlinear activation function f : R→ R
Output / activation: y = σ(w>x+b)

4/30

Perceptron
F. Rosenblatt: The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain. Phys. Rev. 65, 386-408 (1958)

Single neuron that acts as a binary classifier with

σ(x) =

{
1 w>x+b > 0
0 otherwise.

Training data X ∈ RN×n, y ∈ {0,1}N . Parameters w ∈ Rn, b ∈ R.

Algorithm
1 Initialize w0 and b0
2 For each training pair (xi ,yi):

1 Predict output: ŷ t
i = σ(w>x+b)

2 Update weights:

wt+1 =wt +(yi − ŷ t
i)xi

bt+1 = bt +(yi − ŷ t
i)

4/30

Perceptron
F. Rosenblatt: The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain. Phys. Rev. 65, 386-408 (1958)

Single neuron that acts as a binary classifier with

σ(x) =

{
1 w>x+b > 0
0 otherwise.

Training data X ∈ RN×n, y ∈ {0,1}N . Parameters w ∈ Rn, b ∈ R.

Algorithm
1 Initialize w0 and b0
2 For each training pair (xi ,yi):

1 Predict output: ŷ t
i = σ(w>x+b)

2 Update weights:

wt+1 =wt +(yi − ŷ t
i)xi

bt+1 = bt +(yi − ŷ t
i)

5/30

Perceptron
Training - Illustration

+

+

+ +

+

� b

kwk

w

6/30

Perceptron
Training - Illustration

+

+

+ +

+

� b

kwk

w

+
+

+

+ +

+

� b

kwk

w

+

7/30

Perceptron
Training - Illustration

+

+

+ +

+

� b

kwk

w
+

+

+

+ +

+

� b

kwk

w

+

8/30

Perceptron
Perceptron can learn linearly separable functions

Perceptron can learn linearly separable functions. Separation plane
divides input space in classes {0,1} and is defined by normal vector w
and shift b.

Support vector machine: Perceptron with maximum separation margin.

1

1From https://en.wikipedia.org/wiki/Activation_function

9/30

Multilayer Feedforward Network / Perceptron

Sequence of linear and nonlinear transforms defined by the recursion:

xl+1 = σ

(
Wlxl +bl

)
L layers indexed by l = 1, ...,L. Input vector x(0) does not count as a
layer.
xl ∈ Rnl : Activations of nl neurons at layer l
Trainable weights Wl ∈ Rnl−1×nl and biases bl ∈ Rnl at each layer.
W l

ij is connecting neuron j of layer l−1 with neuron i of layer l .
Nonlinear function σ : R→ R. σ(x) = [σ(x1), ...,σ(xn)]> is
shorthand for applied element-wise application to vector x ∈ Rn.
Output vector: ŷ = xl (ŷ: network predictions. y: training values)

9/30

Multilayer Feedforward Network / Perceptron

Sequence of linear and nonlinear transforms defined by the recursion:

xl+1 = σ

(
Wlxl +bl

)
L layers indexed by l = 1, ...,L. Input vector x(0) does not count as a
layer.
xl ∈ Rnl : Activations of nl neurons at layer l
Trainable weights Wl ∈ Rnl−1×nl and biases bl ∈ Rnl at each layer.
W l

ij is connecting neuron j of layer l−1 with neuron i of layer l .
Nonlinear function σ : R→ R. σ(x) = [σ(x1), ...,σ(xn)]> is
shorthand for applied element-wise application to vector x ∈ Rn.
Output vector: ŷ = xl (ŷ: network predictions. y: training values)

9/30

Multilayer Feedforward Network / Perceptron

Sequence of linear and nonlinear transforms defined by the recursion:

xl+1 = σ

(
Wlxl +bl

)
L layers indexed by l = 1, ...,L. Input vector x(0) does not count as a
layer.
xl ∈ Rnl : Activations of nl neurons at layer l
Trainable weights Wl ∈ Rnl−1×nl and biases bl ∈ Rnl at each layer.
W l

ij is connecting neuron j of layer l−1 with neuron i of layer l .
Nonlinear function σ : R→ R. σ(x) = [σ(x1), ...,σ(xn)]> is
shorthand for applied element-wise application to vector x ∈ Rn.
Output vector: ŷ = xl (ŷ: network predictions. y: training values)

9/30

Multilayer Feedforward Network / Perceptron

Sequence of linear and nonlinear transforms defined by the recursion:

xl+1 = σ

(
Wlxl +bl

)
L layers indexed by l = 1, ...,L. Input vector x(0) does not count as a
layer.
xl ∈ Rnl : Activations of nl neurons at layer l
Trainable weights Wl ∈ Rnl−1×nl and biases bl ∈ Rnl at each layer.
W l

ij is connecting neuron j of layer l−1 with neuron i of layer l .
Nonlinear function σ : R→ R. σ(x) = [σ(x1), ...,σ(xn)]> is
shorthand for applied element-wise application to vector x ∈ Rn.
Output vector: ŷ = xl (ŷ: network predictions. y: training values)

9/30

Multilayer Feedforward Network / Perceptron

Sequence of linear and nonlinear transforms defined by the recursion:

xl+1 = σ

(
Wlxl +bl

)
L layers indexed by l = 1, ...,L. Input vector x(0) does not count as a
layer.
xl ∈ Rnl : Activations of nl neurons at layer l
Trainable weights Wl ∈ Rnl−1×nl and biases bl ∈ Rnl at each layer.
W l

ij is connecting neuron j of layer l−1 with neuron i of layer l .
Nonlinear function σ : R→ R. σ(x) = [σ(x1), ...,σ(xn)]> is
shorthand for applied element-wise application to vector x ∈ Rn.
Output vector: ŷ = xl (ŷ: network predictions. y: training values)

10/30

Common Choices of Nonlinearities

1
Drawback: vanishing gradients. For large input weights, activation
function saturates and derivative of output vanishes (especially for deep
networks).

1From https://en.wikipedia.org/wiki/Activation_function

10/30

Common Choices of Nonlinearities

1
Drawback: vanishing gradients. For large input weights, activation
function saturates and derivative of output vanishes (especially for deep
networks).

1From https://en.wikipedia.org/wiki/Activation_function

11/30

Common Choices of Nonlinearities

1
Non-saturating activation functions – gradients stay finite even for
large inputs. Continuously differentiable versions: ELUs and SoftPlus.

1From https://en.wikipedia.org/wiki/Activation_function

11/30

Common Choices of Nonlinearities

1
Non-saturating activation functions – gradients stay finite even for
large inputs. Continuously differentiable versions: ELUs and SoftPlus.

1From https://en.wikipedia.org/wiki/Activation_function

12/30

Universal Representation Theorem (URT)

Sloppy formulation: A neural network with a single hidden layer and a
monotonically increasing nonlinearity σ can approximate any continuous
function F : Rn0 7→ Rn2 from inputs Rn0 to outputs Rn2 with arbitrary
accuracy given that sufficiently many hidden neurons n1 are provided.

Proof for sigmoid activation functions: G. Cybenko:
"Approximations by superpositions of sigmoidal functions",
Mathematics of Control, Signals, and Systems 2, 303-314 (1989)
Generalization: K. Hornik: "Approximation Capabilities of Multilayer
Feedforward Networks", Neural Networks 4, 251-257 (1991)

Caveats:
Existence of network parameters that approximate F does not mean
these parameters can be efficiently found.
Approximation of a function does not mean exact representation,
error might be too large for practical purposes.
For many complex functions, the number of hidden neurons required
to achieve acceptable accuracy is unpractical. → deep neural
networks.

12/30

Universal Representation Theorem (URT)

Sloppy formulation: A neural network with a single hidden layer and a
monotonically increasing nonlinearity σ can approximate any continuous
function F : Rn0 7→ Rn2 from inputs Rn0 to outputs Rn2 with arbitrary
accuracy given that sufficiently many hidden neurons n1 are provided.

Proof for sigmoid activation functions: G. Cybenko:
"Approximations by superpositions of sigmoidal functions",
Mathematics of Control, Signals, and Systems 2, 303-314 (1989)
Generalization: K. Hornik: "Approximation Capabilities of Multilayer
Feedforward Networks", Neural Networks 4, 251-257 (1991)

Caveats:
Existence of network parameters that approximate F does not mean
these parameters can be efficiently found.
Approximation of a function does not mean exact representation,
error might be too large for practical purposes.
For many complex functions, the number of hidden neurons required
to achieve acceptable accuracy is unpractical. → deep neural
networks.

12/30

Universal Representation Theorem (URT)

Sloppy formulation: A neural network with a single hidden layer and a
monotonically increasing nonlinearity σ can approximate any continuous
function F : Rn0 7→ Rn2 from inputs Rn0 to outputs Rn2 with arbitrary
accuracy given that sufficiently many hidden neurons n1 are provided.

Proof for sigmoid activation functions: G. Cybenko:
"Approximations by superpositions of sigmoidal functions",
Mathematics of Control, Signals, and Systems 2, 303-314 (1989)
Generalization: K. Hornik: "Approximation Capabilities of Multilayer
Feedforward Networks", Neural Networks 4, 251-257 (1991)

Caveats:
Existence of network parameters that approximate F does not mean
these parameters can be efficiently found.
Approximation of a function does not mean exact representation,
error might be too large for practical purposes.
For many complex functions, the number of hidden neurons required
to achieve acceptable accuracy is unpractical. → deep neural
networks.

12/30

Universal Representation Theorem (URT)

Sloppy formulation: A neural network with a single hidden layer and a
monotonically increasing nonlinearity σ can approximate any continuous
function F : Rn0 7→ Rn2 from inputs Rn0 to outputs Rn2 with arbitrary
accuracy given that sufficiently many hidden neurons n1 are provided.

Proof for sigmoid activation functions: G. Cybenko:
"Approximations by superpositions of sigmoidal functions",
Mathematics of Control, Signals, and Systems 2, 303-314 (1989)
Generalization: K. Hornik: "Approximation Capabilities of Multilayer
Feedforward Networks", Neural Networks 4, 251-257 (1991)

Caveats:
Existence of network parameters that approximate F does not mean
these parameters can be efficiently found.
Approximation of a function does not mean exact representation,
error might be too large for practical purposes.
For many complex functions, the number of hidden neurons required
to achieve acceptable accuracy is unpractical. → deep neural
networks.

12/30

Universal Representation Theorem (URT)

Sloppy formulation: A neural network with a single hidden layer and a
monotonically increasing nonlinearity σ can approximate any continuous
function F : Rn0 7→ Rn2 from inputs Rn0 to outputs Rn2 with arbitrary
accuracy given that sufficiently many hidden neurons n1 are provided.

Proof for sigmoid activation functions: G. Cybenko:
"Approximations by superpositions of sigmoidal functions",
Mathematics of Control, Signals, and Systems 2, 303-314 (1989)
Generalization: K. Hornik: "Approximation Capabilities of Multilayer
Feedforward Networks", Neural Networks 4, 251-257 (1991)

Caveats:
Existence of network parameters that approximate F does not mean
these parameters can be efficiently found.
Approximation of a function does not mean exact representation,
error might be too large for practical purposes.
For many complex functions, the number of hidden neurons required
to achieve acceptable accuracy is unpractical. → deep neural
networks.

12/30

Universal Representation Theorem (URT)

Sloppy formulation: A neural network with a single hidden layer and a
monotonically increasing nonlinearity σ can approximate any continuous
function F : Rn0 7→ Rn2 from inputs Rn0 to outputs Rn2 with arbitrary
accuracy given that sufficiently many hidden neurons n1 are provided.

Proof for sigmoid activation functions: G. Cybenko:
"Approximations by superpositions of sigmoidal functions",
Mathematics of Control, Signals, and Systems 2, 303-314 (1989)
Generalization: K. Hornik: "Approximation Capabilities of Multilayer
Feedforward Networks", Neural Networks 4, 251-257 (1991)

Caveats:
Existence of network parameters that approximate F does not mean
these parameters can be efficiently found.
Approximation of a function does not mean exact representation,
error might be too large for practical purposes.
For many complex functions, the number of hidden neurons required
to achieve acceptable accuracy is unpractical. → deep neural
networks.

13/30

Universal Representation Theorem (URT)1

One-dimensional version: Given continuous function f (x) : R 7→ R, the
URT guarantees that for sufficiently many hidden neurons n1, there exist
weights (w1,b1,w2,b2), such that the two-layer neural network function

ŷ(x) = σ

((
w2)>

σ
(
w1x +b1

)
+b2

)
approximates the function f (x) with the desired accuracy ε:

|ŷ(x)− f (x)|< ε ∀x ∈ R.

Example: Approximate the following function with σ(z) = (1+ e−z)−1

1From http://neuralnetworksanddeeplearning.com/chap4.html

13/30

Universal Representation Theorem (URT)1

One-dimensional version: Given continuous function f (x) : R 7→ R, the
URT guarantees that for sufficiently many hidden neurons n1, there exist
weights (w1,b1,w2,b2), such that the two-layer neural network function

ŷ(x) = σ

((
w2)>

σ
(
w1x +b1

)
+b2

)
approximates the function f (x) with the desired accuracy ε:

|ŷ(x)− f (x)|< ε ∀x ∈ R.

Example: Approximate the following function with σ(z) = (1+ e−z)−1

1From http://neuralnetworksanddeeplearning.com/chap4.html

14/30

Universal Representation Theorem (URT)1

Consider output of one hidden neuron.

Increasing weight makes the sigmoid more steep, approximating a step
function. Use the bias to shift the step where we want it:

1From http://neuralnetworksanddeeplearning.com/chap4.html

14/30

Universal Representation Theorem (URT)1

Consider output of one hidden neuron.

Increasing weight makes the sigmoid more steep, approximating a step
function. Use the bias to shift the step where we want it:

1From http://neuralnetworksanddeeplearning.com/chap4.html

15/30

Universal Representation Theorem (URT)1

Characterize each hidden neuron i by the position si = b1i /w1
i where it

places the step. As the output neuron performs a weighted sum, we can
form arbitrary functions as the input to the output nonlinearity:

1From http://neuralnetworksanddeeplearning.com/chap4.html

16/30

Universal Representation Theorem (URT)1

In order to deal with the final nonlinearity, we design the weights such
that we approximate σ−1 (f (x)) by the input to the output nonlinearity:

f (x) = σ
(
σ
−1 (f (x))

)

See http://neuralnetworksanddeeplearning.com/chap4.html for
illustration of multidimensional case.

1From http://neuralnetworksanddeeplearning.com/chap4.html

17/30

Multilayer Feedforward Network

Network architecture is typically the most complex model decision:

Number of hidden layers L−1 and number of neurons (n1, ...nL−1).
Type of activation functions σ .
Layer types (dense, convolutional, etc. – more details later)
Additional regularization terms, e.g. promoting sparsity.

Choosing the network architecture:
In principle: Hyperparameter selection problem.
In practice: Engineering problem, problem specific architecture.
Depends on amount and type of data and available computational
resources.

Intuition: number of parameters should be large enough to prevent
underfitting (Advani and Saxe, 2017).

17/30

Multilayer Feedforward Network

Network architecture is typically the most complex model decision:

Number of hidden layers L−1 and number of neurons (n1, ...nL−1).
Type of activation functions σ .
Layer types (dense, convolutional, etc. – more details later)
Additional regularization terms, e.g. promoting sparsity.

Choosing the network architecture:
In principle: Hyperparameter selection problem.
In practice: Engineering problem, problem specific architecture.
Depends on amount and type of data and available computational
resources.

Intuition: number of parameters should be large enough to prevent
underfitting (Advani and Saxe, 2017).

17/30

Multilayer Feedforward Network

Network architecture is typically the most complex model decision:

Number of hidden layers L−1 and number of neurons (n1, ...nL−1).
Type of activation functions σ .
Layer types (dense, convolutional, etc. – more details later)
Additional regularization terms, e.g. promoting sparsity.

Choosing the network architecture:
In principle: Hyperparameter selection problem.
In practice: Engineering problem, problem specific architecture.
Depends on amount and type of data and available computational
resources.

Intuition: number of parameters should be large enough to prevent
underfitting (Advani and Saxe, 2017).

17/30

Multilayer Feedforward Network

Network architecture is typically the most complex model decision:

Number of hidden layers L−1 and number of neurons (n1, ...nL−1).
Type of activation functions σ .
Layer types (dense, convolutional, etc. – more details later)
Additional regularization terms, e.g. promoting sparsity.

Choosing the network architecture:
In principle: Hyperparameter selection problem.
In practice: Engineering problem, problem specific architecture.
Depends on amount and type of data and available computational
resources.

Intuition: number of parameters should be large enough to prevent
underfitting (Advani and Saxe, 2017).

18/30

Training Multilayer Neural Networks
Cost or loss function C quantifies performance of network with
parameters θ to predict observations X.

Learning network weights

θ̂ = argminθ C(X, Y, θ)

Minimimizing cost C ≡ maximizing score −C . Often we just write C(θ).

Example: for supervised learning with features X = (xi)i=1...N and labels
Y = (yi)i=1...N . Neural network prediction ŷi (xi , θ). Error vector
∆i = yi − ŷi (xi , θ).

Regression: L2 error. Becomes mean square error for 1d-outputs.

CL2(X, θ) =
1
N

N
∑
i=1
‖∆i‖22 =

1
N

N
∑
i=1

∆>i ∆i

Classification to K categories (si)i=1,...,N . Define one-hot
encoding:

yim =

{
1 if si = m
0 otherwise,

and use L2 error. More common choice: categorial cross-entropy
(later).

18/30

Training Multilayer Neural Networks
Cost or loss function C quantifies performance of network with
parameters θ to predict observations X.

Learning network weights

θ̂ = argminθ C(X, Y, θ)

Minimimizing cost C ≡ maximizing score −C . Often we just write C(θ).

Example: for supervised learning with features X = (xi)i=1...N and labels
Y = (yi)i=1...N . Neural network prediction ŷi (xi , θ). Error vector
∆i = yi − ŷi (xi , θ).

Regression: L2 error. Becomes mean square error for 1d-outputs.

CL2(X, θ) =
1
N

N
∑
i=1
‖∆i‖22 =

1
N

N
∑
i=1

∆>i ∆i

Classification to K categories (si)i=1,...,N . Define one-hot
encoding:

yim =

{
1 if si = m
0 otherwise,

and use L2 error. More common choice: categorial cross-entropy
(later).

18/30

Training Multilayer Neural Networks
Cost or loss function C quantifies performance of network with
parameters θ to predict observations X.

Learning network weights

θ̂ = argminθ C(X, Y, θ)

Minimimizing cost C ≡ maximizing score −C . Often we just write C(θ).

Example: for supervised learning with features X = (xi)i=1...N and labels
Y = (yi)i=1...N . Neural network prediction ŷi (xi , θ). Error vector
∆i = yi − ŷi (xi , θ).

Regression: L2 error. Becomes mean square error for 1d-outputs.

CL2(X, θ) =
1
N

N
∑
i=1
‖∆i‖22 =

1
N

N
∑
i=1

∆>i ∆i

Classification to K categories (si)i=1,...,N . Define one-hot
encoding:

yim =

{
1 if si = m
0 otherwise,

and use L2 error. More common choice: categorial cross-entropy
(later).

18/30

Training Multilayer Neural Networks
Cost or loss function C quantifies performance of network with
parameters θ to predict observations X.

Learning network weights

θ̂ = argminθ C(X, Y, θ)

Minimimizing cost C ≡ maximizing score −C . Often we just write C(θ).

Example: for supervised learning with features X = (xi)i=1...N and labels
Y = (yi)i=1...N . Neural network prediction ŷi (xi , θ). Error vector
∆i = yi − ŷi (xi , θ).

Regression: L2 error. Becomes mean square error for 1d-outputs.

CL2(X, θ) =
1
N

N
∑
i=1
‖∆i‖22 =

1
N

N
∑
i=1

∆>i ∆i

Classification to K categories (si)i=1,...,N . Define one-hot
encoding:

yim =

{
1 if si = m
0 otherwise,

and use L2 error. More common choice: categorial cross-entropy
(later).

19/30

Training Multilayer Neural Networks

Neural networks are usually trained with some form of gradient descent:

Simple gradient descent algorithm
1 Initialize θ0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θ C(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

How do we compute the gradient ∇θC(θ t)?
Networks are functions of functions, so we will need to use the chain
rule of differentiation.
Key is to make differentiation fully automatic so that we can just
define the network architecture without worrying about functions
and gradients.
→ Backpropagation.

19/30

Training Multilayer Neural Networks

Neural networks are usually trained with some form of gradient descent:

Simple gradient descent algorithm
1 Initialize θ0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θ C(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

How do we compute the gradient ∇θC(θ t)?
Networks are functions of functions, so we will need to use the chain
rule of differentiation.
Key is to make differentiation fully automatic so that we can just
define the network architecture without worrying about functions
and gradients.
→ Backpropagation.

19/30

Training Multilayer Neural Networks

Neural networks are usually trained with some form of gradient descent:

Simple gradient descent algorithm
1 Initialize θ0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θ C(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

How do we compute the gradient ∇θC(θ t)?
Networks are functions of functions, so we will need to use the chain
rule of differentiation.
Key is to make differentiation fully automatic so that we can just
define the network architecture without worrying about functions
and gradients.
→ Backpropagation.

19/30

Training Multilayer Neural Networks

Neural networks are usually trained with some form of gradient descent:

Simple gradient descent algorithm
1 Initialize θ0
2 For t = 0, ...,T −1 or until converged:

1 Compute gradient g(θ t) = ∇θ C(θ t)
2 Update parameters: θ t+1 = θ t −ηtg(θ t)

How do we compute the gradient ∇θC(θ t)?
Networks are functions of functions, so we will need to use the chain
rule of differentiation.
Key is to make differentiation fully automatic so that we can just
define the network architecture without worrying about functions
and gradients.
→ Backpropagation.

20/30

Backpropagation

Notation (reminder): L Layers indexed by l = 1, ...,L. xl ∈ Rnl :
Activations of nl neurons at layer l . Network output: ŷ = xL.

xl+1 = σ

(
Wlxl +bl

)
Trainable weights Wl ∈ Rnl×nl−1 and biases bl ∈ Rnl at each layer.
W l

ij is connecting neuron j of layer l−1 with neuron i of layer l .
Nonlinear activation functions σ : R→ R, applied element-wise.

Activation of a single neuron:

x l
i = σ

(
z l

i

)
z l

i = ∑
j
w l

ijx l−1
j +bl

i

20/30

Backpropagation

Notation (reminder): L Layers indexed by l = 1, ...,L. xl ∈ Rnl :
Activations of nl neurons at layer l . Network output: ŷ = xL.

xl+1 = σ

(
Wlxl +bl

)
Trainable weights Wl ∈ Rnl×nl−1 and biases bl ∈ Rnl at each layer.
W l

ij is connecting neuron j of layer l−1 with neuron i of layer l .
Nonlinear activation functions σ : R→ R, applied element-wise.

Activation of a single neuron:

x l
i = σ

(
z l

i

)
z l

i = ∑
j
w l

ijx l−1
j +bl

i

21/30

Backpropagation

Loss gradient with respect to the activations of the output neurons:

∂C
∂ ŷi

=
∂C
∂xL

i

Depends on the definition of the loss function. For mean square
error:

C(X,θ) =
1
N

N
∑
k=1

c(xk ,yk ,θ)
∂C(X,θ)

∂ ŷi
=

1
N

N
∑
k=1

∂c(xk ,yk ,θ)

∂ ŷi

with

c(x,y ,θ) =
1
N

N
∑
i=1

(yi − ŷi (x,θ))2
∂c(x,y ,θ)

∂ ŷi
= 2(ŷi (x,θ)−yi)

Loss function needs to be differentiable.
Loss-specific derivatives can be implemented with the loss functions
in a neural network package.

21/30

Backpropagation

Loss gradient with respect to the activations of the output neurons:

∂C
∂ ŷi

=
∂C
∂xL

i

Depends on the definition of the loss function. For mean square
error:

C(X,θ) =
1
N

N
∑
k=1

c(xk ,yk ,θ)
∂C(X,θ)

∂ ŷi
=

1
N

N
∑
k=1

∂c(xk ,yk ,θ)

∂ ŷi

with

c(x,y ,θ) =
1
N

N
∑
i=1

(yi − ŷi (x,θ))2
∂c(x,y ,θ)

∂ ŷi
= 2(ŷi (x,θ)−yi)

Loss function needs to be differentiable.
Loss-specific derivatives can be implemented with the loss functions
in a neural network package.

21/30

Backpropagation

Loss gradient with respect to the activations of the output neurons:

∂C
∂ ŷi

=
∂C
∂xL

i

Depends on the definition of the loss function. For mean square
error:

C(X,θ) =
1
N

N
∑
k=1

c(xk ,yk ,θ)
∂C(X,θ)

∂ ŷi
=

1
N

N
∑
k=1

∂c(xk ,yk ,θ)

∂ ŷi

with

c(x,y ,θ) =
1
N

N
∑
i=1

(yi − ŷi (x,θ))2
∂c(x,y ,θ)

∂ ŷi
= 2(ŷi (x,θ)−yi)

Loss function needs to be differentiable.
Loss-specific derivatives can be implemented with the loss functions
in a neural network package.

22/30

Backpropagation
Error: Loss gradient with respect to the ith weighted input

eL
i =

∂C
∂zL

i
=

∂c(x,y ,θ)

∂ ŷi︸ ︷︷ ︸
loss derivative

∂ ŷi
∂zL

i
=

∂c(x,y ,θ)

∂σ(zL
i)

∂σ(zL
i)

∂zL
i

=
∂c(x,y ,θ)

∂σ(zL
i)

σ
′(zL

i)︸ ︷︷ ︸
activation derivative

The derivative of the fixed activation function can be implemented
along with that function, e.g.:

σ(z) =
1

1+ e−z σ
′(z) = σ(z)(1−σ(z)) =

e−z

(1+ e−z)2

Backpropagate error to earlier layers using
z l+1

j = ∑k w l+1
jk x l

k +bl+1
j :

el
i =

∂C
∂z l

i
= ∑

j

∂C
∂z l+1

j

∂z l+1
j

∂z l
i

= ∑
j
el+1

j
∂z l+1

j
∂z l

i

= ∑
j
el+1

j
∂

∂z l
i

(
∑
k
w l+1

jk σ(z l
k) +bl+1

j

)
= σ

′(z l
i)∑

j
el+1

j w l+1
ji

22/30

Backpropagation
Error: Loss gradient with respect to the ith weighted input

eL
i =

∂C
∂zL

i
=

∂c(x,y ,θ)

∂ ŷi︸ ︷︷ ︸
loss derivative

∂ ŷi
∂zL

i
=

∂c(x,y ,θ)

∂σ(zL
i)

∂σ(zL
i)

∂zL
i

=
∂c(x,y ,θ)

∂σ(zL
i)

σ
′(zL

i)︸ ︷︷ ︸
activation derivative

The derivative of the fixed activation function can be implemented
along with that function, e.g.:

σ(z) =
1

1+ e−z σ
′(z) = σ(z)(1−σ(z)) =

e−z

(1+ e−z)2

Backpropagate error to earlier layers using
z l+1

j = ∑k w l+1
jk x l

k +bl+1
j :

el
i =

∂C
∂z l

i
= ∑

j

∂C
∂z l+1

j

∂z l+1
j

∂z l
i

= ∑
j
el+1

j
∂z l+1

j
∂z l

i

= ∑
j
el+1

j
∂

∂z l
i

(
∑
k
w l+1

jk σ(z l
k) +bl+1

j

)
= σ

′(z l
i)∑

j
el+1

j w l+1
ji

23/30

Backpropagation

Compute gradients at each layer using z l
i = ∑k w l

ikx
l−1
k +bl

i :

∂C
∂bl

i
=

∂C
∂z l

i

∂z l
i

∂bl
i

=
∂C
∂z l

i
= el

i

∂C
∂w l

ij
=

∂C
∂z l

i

∂z l
i

∂w l
ij

=
∂C
∂z l

i
x l−1

j = el
ix l−1

j

Weight update:

bl
i ← bl

i −ηel
i

w l
ij ← w l

ij −ηel
ix l−1

j

with learning rate η .

23/30

Backpropagation

Compute gradients at each layer using z l
i = ∑k w l

ikx
l−1
k +bl

i :

∂C
∂bl

i
=

∂C
∂z l

i

∂z l
i

∂bl
i

=
∂C
∂z l

i
= el

i

∂C
∂w l

ij
=

∂C
∂z l

i

∂z l
i

∂w l
ij

=
∂C
∂z l

i
x l−1

j = el
ix l−1

j

Weight update:

bl
i ← bl

i −ηel
i

w l
ij ← w l

ij −ηel
ix l−1

j

with learning rate η .

24/30

Forward- and Backpropagation

1 Activation at input layer: Input activations x0i .
2 Feedforward: For each layer, compute weighted sum and nonlinear

transformation, and thus activations of neurons x l
i

3 Error at output layer: Calculate the error of output layer using the
derivatives of the cost function.

4 Backpropagate the error: Propagate the error backwards and
compute ∆l

i for all layers.
5 Calculate gradients: dC

dbl
i
and dC

dw l
ij
of cost function with respect to

all trainble weights.
Neural network packages (Theano, TensorFlow, PyTorch, Autograd, ...) have
gradients defined for all elementary functions. This permits automatic
differentiation using the product rule for composite functions.

6 Train: Change weights bl
i and w l

ij in the direction opposite gradient.

24/30

Forward- and Backpropagation

1 Activation at input layer: Input activations x0i .
2 Feedforward: For each layer, compute weighted sum and nonlinear

transformation, and thus activations of neurons x l
i

3 Error at output layer: Calculate the error of output layer using the
derivatives of the cost function.

4 Backpropagate the error: Propagate the error backwards and
compute ∆l

i for all layers.
5 Calculate gradients: dC

dbl
i
and dC

dw l
ij
of cost function with respect to

all trainble weights.
Neural network packages (Theano, TensorFlow, PyTorch, Autograd, ...) have
gradients defined for all elementary functions. This permits automatic
differentiation using the product rule for composite functions.

6 Train: Change weights bl
i and w l

ij in the direction opposite gradient.

24/30

Forward- and Backpropagation

1 Activation at input layer: Input activations x0i .
2 Feedforward: For each layer, compute weighted sum and nonlinear

transformation, and thus activations of neurons x l
i

3 Error at output layer: Calculate the error of output layer using the
derivatives of the cost function.

4 Backpropagate the error: Propagate the error backwards and
compute ∆l

i for all layers.
5 Calculate gradients: dC

dbl
i
and dC

dw l
ij
of cost function with respect to

all trainble weights.
Neural network packages (Theano, TensorFlow, PyTorch, Autograd, ...) have
gradients defined for all elementary functions. This permits automatic
differentiation using the product rule for composite functions.

6 Train: Change weights bl
i and w l

ij in the direction opposite gradient.

24/30

Forward- and Backpropagation

1 Activation at input layer: Input activations x0i .
2 Feedforward: For each layer, compute weighted sum and nonlinear

transformation, and thus activations of neurons x l
i

3 Error at output layer: Calculate the error of output layer using the
derivatives of the cost function.

4 Backpropagate the error: Propagate the error backwards and
compute ∆l

i for all layers.
5 Calculate gradients: dC

dbl
i
and dC

dw l
ij
of cost function with respect to

all trainble weights.
Neural network packages (Theano, TensorFlow, PyTorch, Autograd, ...) have
gradients defined for all elementary functions. This permits automatic
differentiation using the product rule for composite functions.

6 Train: Change weights bl
i and w l

ij in the direction opposite gradient.

24/30

Forward- and Backpropagation

1 Activation at input layer: Input activations x0i .
2 Feedforward: For each layer, compute weighted sum and nonlinear

transformation, and thus activations of neurons x l
i

3 Error at output layer: Calculate the error of output layer using the
derivatives of the cost function.

4 Backpropagate the error: Propagate the error backwards and
compute ∆l

i for all layers.
5 Calculate gradients: dC

dbl
i
and dC

dw l
ij
of cost function with respect to

all trainble weights.
Neural network packages (Theano, TensorFlow, PyTorch, Autograd, ...) have
gradients defined for all elementary functions. This permits automatic
differentiation using the product rule for composite functions.

6 Train: Change weights bl
i and w l

ij in the direction opposite gradient.

24/30

Forward- and Backpropagation

1 Activation at input layer: Input activations x0i .
2 Feedforward: For each layer, compute weighted sum and nonlinear

transformation, and thus activations of neurons x l
i

3 Error at output layer: Calculate the error of output layer using the
derivatives of the cost function.

4 Backpropagate the error: Propagate the error backwards and
compute ∆l

i for all layers.
5 Calculate gradients: dC

dbl
i
and dC

dw l
ij
of cost function with respect to

all trainble weights.
Neural network packages (Theano, TensorFlow, PyTorch, Autograd, ...) have
gradients defined for all elementary functions. This permits automatic
differentiation using the product rule for composite functions.

6 Train: Change weights bl
i and w l

ij in the direction opposite gradient.

25/30

Software

keras

tensorflowtheano pytorch

keras: high-level python package.
Easy to learn, but limited flexibility
Runs on CPUs (slow) and NVidia GPUs (via theano, tensorflow)
Recommended installation: direct pip install of the newest
compatible keras and tensorflow packages.

theano, tensorflow: low-level python packages for GPU-accelerated
tensor operations.

Harder to learn, maximum flexibility and speed.
Mathematical code defines a graph with operations as nodes and
tensors passed along the edges.
Before executing, GPU code for graph is generated and compiled.
Derivatives are defined for basic operators, enabling automatic
backprop for most code.
Recommended installation: pip or docker.

25/30

Software

keras

tensorflowtheano pytorch

keras: high-level python package.
Easy to learn, but limited flexibility
Runs on CPUs (slow) and NVidia GPUs (via theano, tensorflow)
Recommended installation: direct pip install of the newest
compatible keras and tensorflow packages.

theano, tensorflow: low-level python packages for GPU-accelerated
tensor operations.

Harder to learn, maximum flexibility and speed.
Mathematical code defines a graph with operations as nodes and
tensors passed along the edges.
Before executing, GPU code for graph is generated and compiled.
Derivatives are defined for basic operators, enabling automatic
backprop for most code.
Recommended installation: pip or docker.

26/30

Software

keras

tensorflowtheano pytorch

pytorch: simplified low-level python package for GPU-accelerated
tensor operations.

Learning curve between keras and tensorflow.
Allows dynamic changes in network structures.
More intuitive than tensorflow because operations are executed on
demand (dynamic linking of precompiled modules instead of code
generation)
Recommended installation: conda

27/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
1 Benchmark datasets can be downloaded via NN packages (e.g.

MNIST, CIFAR)
2 Featurization means to define a vector or tensor representation of the

data which can be processed by NN packages.
3 Splitting into training and test data (size of test set should be

related to complexity of learning task - e.g. 80/20 for MNIST with
10 classes, 50/50 for ImageNet with 1000 classes)

4 Shuffle data sets.
5 Center data: subtract mean over all samples from each sample.
6 Rescale data: when approximately normal, divide the standard

deviation. Otherwise, rescaled by the maximum absolute value to
move data to interval [−1,1]. Rescaling ensures that the weights of
the DNN are of a similar order of magnitude.

7 Data augmentation, i.e. distorting data samples from the existing
dataset in some way to enhance size the dataset, e.g. to exploit
invariances.

27/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
1 Benchmark datasets can be downloaded via NN packages (e.g.

MNIST, CIFAR)
2 Featurization means to define a vector or tensor representation of the

data which can be processed by NN packages.
3 Splitting into training and test data (size of test set should be

related to complexity of learning task - e.g. 80/20 for MNIST with
10 classes, 50/50 for ImageNet with 1000 classes)

4 Shuffle data sets.
5 Center data: subtract mean over all samples from each sample.
6 Rescale data: when approximately normal, divide the standard

deviation. Otherwise, rescaled by the maximum absolute value to
move data to interval [−1,1]. Rescaling ensures that the weights of
the DNN are of a similar order of magnitude.

7 Data augmentation, i.e. distorting data samples from the existing
dataset in some way to enhance size the dataset, e.g. to exploit
invariances.

27/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
1 Benchmark datasets can be downloaded via NN packages (e.g.

MNIST, CIFAR)
2 Featurization means to define a vector or tensor representation of the

data which can be processed by NN packages.
3 Splitting into training and test data (size of test set should be

related to complexity of learning task - e.g. 80/20 for MNIST with
10 classes, 50/50 for ImageNet with 1000 classes)

4 Shuffle data sets.
5 Center data: subtract mean over all samples from each sample.
6 Rescale data: when approximately normal, divide the standard

deviation. Otherwise, rescaled by the maximum absolute value to
move data to interval [−1,1]. Rescaling ensures that the weights of
the DNN are of a similar order of magnitude.

7 Data augmentation, i.e. distorting data samples from the existing
dataset in some way to enhance size the dataset, e.g. to exploit
invariances.

27/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
1 Benchmark datasets can be downloaded via NN packages (e.g.

MNIST, CIFAR)
2 Featurization means to define a vector or tensor representation of the

data which can be processed by NN packages.
3 Splitting into training and test data (size of test set should be

related to complexity of learning task - e.g. 80/20 for MNIST with
10 classes, 50/50 for ImageNet with 1000 classes)

4 Shuffle data sets.
5 Center data: subtract mean over all samples from each sample.
6 Rescale data: when approximately normal, divide the standard

deviation. Otherwise, rescaled by the maximum absolute value to
move data to interval [−1,1]. Rescaling ensures that the weights of
the DNN are of a similar order of magnitude.

7 Data augmentation, i.e. distorting data samples from the existing
dataset in some way to enhance size the dataset, e.g. to exploit
invariances.

27/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
1 Benchmark datasets can be downloaded via NN packages (e.g.

MNIST, CIFAR)
2 Featurization means to define a vector or tensor representation of the

data which can be processed by NN packages.
3 Splitting into training and test data (size of test set should be

related to complexity of learning task - e.g. 80/20 for MNIST with
10 classes, 50/50 for ImageNet with 1000 classes)

4 Shuffle data sets.
5 Center data: subtract mean over all samples from each sample.
6 Rescale data: when approximately normal, divide the standard

deviation. Otherwise, rescaled by the maximum absolute value to
move data to interval [−1,1]. Rescaling ensures that the weights of
the DNN are of a similar order of magnitude.

7 Data augmentation, i.e. distorting data samples from the existing
dataset in some way to enhance size the dataset, e.g. to exploit
invariances.

27/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
1 Benchmark datasets can be downloaded via NN packages (e.g.

MNIST, CIFAR)
2 Featurization means to define a vector or tensor representation of the

data which can be processed by NN packages.
3 Splitting into training and test data (size of test set should be

related to complexity of learning task - e.g. 80/20 for MNIST with
10 classes, 50/50 for ImageNet with 1000 classes)

4 Shuffle data sets.
5 Center data: subtract mean over all samples from each sample.
6 Rescale data: when approximately normal, divide the standard

deviation. Otherwise, rescaled by the maximum absolute value to
move data to interval [−1,1]. Rescaling ensures that the weights of
the DNN are of a similar order of magnitude.

7 Data augmentation, i.e. distorting data samples from the existing
dataset in some way to enhance size the dataset, e.g. to exploit
invariances.

27/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
1 Benchmark datasets can be downloaded via NN packages (e.g.

MNIST, CIFAR)
2 Featurization means to define a vector or tensor representation of the

data which can be processed by NN packages.
3 Splitting into training and test data (size of test set should be

related to complexity of learning task - e.g. 80/20 for MNIST with
10 classes, 50/50 for ImageNet with 1000 classes)

4 Shuffle data sets.
5 Center data: subtract mean over all samples from each sample.
6 Rescale data: when approximately normal, divide the standard

deviation. Otherwise, rescaled by the maximum absolute value to
move data to interval [−1,1]. Rescaling ensures that the weights of
the DNN are of a similar order of magnitude.

7 Data augmentation, i.e. distorting data samples from the existing
dataset in some way to enhance size the dataset, e.g. to exploit
invariances.

28/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
2 Network model: Define layers and connectivity, i.e. architecture of

the network
3 Loss function: Define or implement the cost / loss function that

should be minimized.
4 Optimizer: Choose the Optimizer (e.g. ADAM, RMSprop)
5 Train model: Feed data into (model / loss / optimizer) structure in

order to train it, often in minibatches.
6 Evaluate model: Track the convergence of training and test loss

and evaluate performance on training and test data.
7 Adjust hyperparameters / architecture and repeat from 2 if

necessary. Since learning is expensive, often useful to choose a data
subset for exploration.

28/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
2 Network model: Define layers and connectivity, i.e. architecture of

the network
3 Loss function: Define or implement the cost / loss function that

should be minimized.
4 Optimizer: Choose the Optimizer (e.g. ADAM, RMSprop)
5 Train model: Feed data into (model / loss / optimizer) structure in

order to train it, often in minibatches.
6 Evaluate model: Track the convergence of training and test loss

and evaluate performance on training and test data.
7 Adjust hyperparameters / architecture and repeat from 2 if

necessary. Since learning is expensive, often useful to choose a data
subset for exploration.

28/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
2 Network model: Define layers and connectivity, i.e. architecture of

the network
3 Loss function: Define or implement the cost / loss function that

should be minimized.
4 Optimizer: Choose the Optimizer (e.g. ADAM, RMSprop)
5 Train model: Feed data into (model / loss / optimizer) structure in

order to train it, often in minibatches.
6 Evaluate model: Track the convergence of training and test loss

and evaluate performance on training and test data.
7 Adjust hyperparameters / architecture and repeat from 2 if

necessary. Since learning is expensive, often useful to choose a data
subset for exploration.

28/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
2 Network model: Define layers and connectivity, i.e. architecture of

the network
3 Loss function: Define or implement the cost / loss function that

should be minimized.
4 Optimizer: Choose the Optimizer (e.g. ADAM, RMSprop)
5 Train model: Feed data into (model / loss / optimizer) structure in

order to train it, often in minibatches.
6 Evaluate model: Track the convergence of training and test loss

and evaluate performance on training and test data.
7 Adjust hyperparameters / architecture and repeat from 2 if

necessary. Since learning is expensive, often useful to choose a data
subset for exploration.

28/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
2 Network model: Define layers and connectivity, i.e. architecture of

the network
3 Loss function: Define or implement the cost / loss function that

should be minimized.
4 Optimizer: Choose the Optimizer (e.g. ADAM, RMSprop)
5 Train model: Feed data into (model / loss / optimizer) structure in

order to train it, often in minibatches.
6 Evaluate model: Track the convergence of training and test loss

and evaluate performance on training and test data.
7 Adjust hyperparameters / architecture and repeat from 2 if

necessary. Since learning is expensive, often useful to choose a data
subset for exploration.

28/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
2 Network model: Define layers and connectivity, i.e. architecture of

the network
3 Loss function: Define or implement the cost / loss function that

should be minimized.
4 Optimizer: Choose the Optimizer (e.g. ADAM, RMSprop)
5 Train model: Feed data into (model / loss / optimizer) structure in

order to train it, often in minibatches.
6 Evaluate model: Track the convergence of training and test loss

and evaluate performance on training and test data.
7 Adjust hyperparameters / architecture and repeat from 2 if

necessary. Since learning is expensive, often useful to choose a data
subset for exploration.

28/30

Steps in neural network training

1 Data preparation: collect data, featurize and preprocess it:
2 Network model: Define layers and connectivity, i.e. architecture of

the network
3 Loss function: Define or implement the cost / loss function that

should be minimized.
4 Optimizer: Choose the Optimizer (e.g. ADAM, RMSprop)
5 Train model: Feed data into (model / loss / optimizer) structure in

order to train it, often in minibatches.
6 Evaluate model: Track the convergence of training and test loss

and evaluate performance on training and test data.
7 Adjust hyperparameters / architecture and repeat from 2 if

necessary. Since learning is expensive, often useful to choose a data
subset for exploration.

29/30

Key advances in deep network training

Until 2009, deep networks were rarely used as training them seemed too
difficult. Key advances that enabled the training of deep networks
include:

1 Rectifiers: Changing from activation functions such as logistic, tanh
or arctan to rectifiers (ReLu, ELU, SoftPlus) avoids the vanishing
gradient problem, makes the loss surface less “frustrated” and thus
improves convergence.

2 Stochastic Gradient Descent: Changing from full gradient descent
to stochastic gradient descent resulted in significant reduction of the
computational cost to convergence (cheaper iterations and ability to
escape flat local minima and saddle points)

3 GPU implementations of neural networks (Theano, TensorFlow),
the resulting computational speedup, and the flexibility of automatic
differentiation.

29/30

Key advances in deep network training

Until 2009, deep networks were rarely used as training them seemed too
difficult. Key advances that enabled the training of deep networks
include:

1 Rectifiers: Changing from activation functions such as logistic, tanh
or arctan to rectifiers (ReLu, ELU, SoftPlus) avoids the vanishing
gradient problem, makes the loss surface less “frustrated” and thus
improves convergence.

2 Stochastic Gradient Descent: Changing from full gradient descent
to stochastic gradient descent resulted in significant reduction of the
computational cost to convergence (cheaper iterations and ability to
escape flat local minima and saddle points)

3 GPU implementations of neural networks (Theano, TensorFlow),
the resulting computational speedup, and the flexibility of automatic
differentiation.

29/30

Key advances in deep network training

Until 2009, deep networks were rarely used as training them seemed too
difficult. Key advances that enabled the training of deep networks
include:

1 Rectifiers: Changing from activation functions such as logistic, tanh
or arctan to rectifiers (ReLu, ELU, SoftPlus) avoids the vanishing
gradient problem, makes the loss surface less “frustrated” and thus
improves convergence.

2 Stochastic Gradient Descent: Changing from full gradient descent
to stochastic gradient descent resulted in significant reduction of the
computational cost to convergence (cheaper iterations and ability to
escape flat local minima and saddle points)

3 GPU implementations of neural networks (Theano, TensorFlow),
the resulting computational speedup, and the flexibility of automatic
differentiation.

29/30

Key advances in deep network training

Until 2009, deep networks were rarely used as training them seemed too
difficult. Key advances that enabled the training of deep networks
include:

1 Rectifiers: Changing from activation functions such as logistic, tanh
or arctan to rectifiers (ReLu, ELU, SoftPlus) avoids the vanishing
gradient problem, makes the loss surface less “frustrated” and thus
improves convergence.

2 Stochastic Gradient Descent: Changing from full gradient descent
to stochastic gradient descent resulted in significant reduction of the
computational cost to convergence (cheaper iterations and ability to
escape flat local minima and saddle points)

3 GPU implementations of neural networks (Theano, TensorFlow),
the resulting computational speedup, and the flexibility of automatic
differentiation.

30/30

Data versus learning performance

