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Generative Neural Networks
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Generative Neural Networks

o ldea: Learn to sample intractable p(x) by sampling tractable latent
distribution
z~ p(z)
and perform a linear transformation to a desired distribution:

x = G(z,0) ~ p(x).

o Example:
o Left: Samples from normal distribution, z ~ .4#(0,1).
z

o Right: Samples mapped through G(z) = {5 + 1 to form a ring.
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Differentiable Generator Nets

o ldea: Learn to sample intractable p(x) by sampling tractable latent
distribution
z~p(2)

and perform a linear transformation to a desired distribution:
x = G(2,0) ~ p(x).

@ Complex Distribution:

o G feedforward neural network

e train parameters 6 to sample from correct distribution.
@ Well-known neural network architectures:

e Variational Autoencoders (inference net + generator net)
o Generative Adversarial Networks (generator network +
discriminator network)
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Variational Autoencoders
Structure

p(x\z)l Pzl x
Neural network Neural network

We'd like to use our mapping x to z. mapping z to x.
observations to

understand the hidden
variable.

Latent space
representation.

min {_EZNq(z\x) Ing(x | Z) + DKL(q(Z | X) || p(Z))}

e Encoder g(z | x) (inference network, recognition model):

o Maps to latent space

o Models approximate posterior distribution g.

o Zk1[q(z | X) || Pmode1(2)] tries to make q(z | x) and pmoge1(z) similar.
e Decoder p(x | z).

o Decodes z — X with the aim to reconstruct the input x.

o E,q(z|x) 108 Pmodel (X | 2) reconstruction log-likelihood
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Conditional Variational Autoencoders

Structure

Variational
Autoencoder

Conditional
Variational
Autoencoder

|E| sample
Encoder Q |E|

|E| sample
Encoder Q |E|

|Z| Decoder P
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Conditional Variational Autoencoders
Structure

Conditional |E|
Variational

sample
Encoder Q A
Autoencoder |E| Decoder P || x
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Classification Variational Autoencoder

Structure

_\ —

x>

Classifier Y Decoder P

Encoder / } ’
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@ Supervised training:

min _Ezwq(z\x) |ogp(x | Z) + DKL(q(Z | X) || p(z)) + Hy_9||2

Reconstruction loss Regularization loss Classification loss

@ Unsupervised training without classification loss. 8/30



Classification Variational Autoenco

Input-output encoding (not optimized...)

l sample
Encoder /
Classifier Decoder P

Reconstruction:
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Sampling (not optimized...




11/30

EESENEENEE
GEEEEECEEE
CEEHEREREE
DENEEEREEE
EEECEEEEEE
GEEEEEREER
SEEEERERNE
DEEESEEENE
REEEEEEREE
SENEEREEEN

ﬂ
Generated Data

B
[¥]

EENERNENEN
SR BN EER
[]>|mfSia] o <[~ o>}

|E| sample
9

)

S~ o
@ 2

=
9=
m$

O
o ©

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂw
NONEERENERN

Input Data
1]
E
/]
 ¢]
H
O]
¢}
a
|
|7

DRERERERES

—
(]
e
(@)
O
c
()
O
-+
>
<
©
c
.9
4+
(q]
=
T
>
(=
RS
-
(gv]
.C
=
9]
n
(©
()

Conditional Sampling (not optimized..




Classification Variational Autoencoder

Interpolation (not optimized...)

l sample
Encoder /

Classifier Decoder P

Input Data Generated Data
-Addaaaaaaan
‘Aaaaaannan
‘Aaaaaaaaaa
‘daaaaaanaaa
-dddaaaaaan
ddaaaaaaaaa
-Aaaaaaaaaa
daaaaaaaan
ooaoaaaaan 12/30
‘aaaaaaaaaa



Classification Variational Autoencoder

Semi-supervised learning (not optimized...)

sample
Encoder /
Classifier |E| Decoder P

. . . supervised unsupervised __
Semi-supervised learning (N + Nigain = 60,000)

pysupervised 100 400 1000 4000 10000 40000 60000

train

Test error | 0.2569 | 0.3577 | 0.7047 0.9291 0.9697 0.9878 | 0.9920
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Generative Adversarial Network

GAN (Goodfellow et al., 2014)

o Idea: Game in which the Generator network competes against a
Discriminator network, i.e. these two networks are adversaries.

Generator network G: directly produces samples
x=G(z;0¢)

Discriminator network D:

o Attempts to distinguish between samples drawn from the training
data and samples drawn from the generator.
o Emits a probability value that x is a true sample and not a fake:

Puue(x) = D(x; 6p)

Simplest formulation: Zero Sum Game

o Discriminator receives payoff v(0¢,0p)
o Generator receives payoff —v(0¢,0p)
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GAN

GAN (Goodfellow et al., 2014)

@ Discrimiator randomly receives either generated (fake) or training
(real) sample as input.

@ Generator tries to fake a sample and trick Discriminator into
believing it, Discriminator tries to reveal the truth.

Training set l/ Discriminator
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Generative Adversarial Network

GAN (Goodfellow et al., 2014)

@ During learning, each player attempts to maximize its own
payoff, so that at convergence:

6 ¢ = argmin max v(66,0p).
6c 6p

o Default choice

v(06,0D) = Expy, 108 D(X; 0p) + Exp, e 108 (1 — D(x;6p))

o Discriminator gets reward for correctly classifying samples as real or

fake.
o Generator gets reward when fooling the classifier into believing its

samples are real.
o At convergence:

o The Generator's samples are indistinguishable from real data
o Discriminator outputs 0.5 everywhere. The discriminator may then

be discarded. 16/30



Generative Adversarial Network

GAN (Goodfellow et al., 2014)

@ Pros:
o Learning process does not require approximations such as variational

inference.
o When maxg, v(0¢,0p) is convex in 8p, the procedure is guaranteed

to converge.
e Cons:
o Learning in GANs can be difficult in practice when G and D are
represented by neural networks and maxg, v(6¢,60p) is not convex.
o In general, simultaneous gradient descent on two players’ costs is not
guaranteed to reach an equilibrium.
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Generative Adversarial Network

GAN (Goodfellow et al., 2014)

Example for convergence problems in zero-sum games:

@ Value function v(a, b) = ab, where one player controls a and receives
value ab, while the other player controls b and receives a value —ab.

@ Each player makes gradient steps, increasing their own value at the
expense of the other player

@ a and b can go into a stable, circular orbit, rather than arriving at
the equilibrium point at the origin.

b
-1/1 J1/-1
a
1 0 1
1/-1° -1/1
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Generative Adversarial Network

GAN (Goodfellow et al., 2014)

@ The equilibria for a minimax game are not local minima of v, but
the points that are simultaneously minima for both players’ costs.

e — Equilibrium points are saddle points of v (local minima wrt player
1 parameters and local maxima wrt player 2 parameters).
o — There are oscillatory solutions that never relax to a saddle point.

@ Dropout seems to be important in the discriminator network.

@ Improving the convergence of GANs is a very active area of
research — since 2013 hundreds of papers have been written on that.
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

man man woman

with glasses without glasses without glasses woman with glasses
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Conditional GAN

https://arxiv.org/pdf/1411.1784.pdf
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Plug & Play Generative Networks:

Nguyen et al, 2016
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Generative Face Completion
Li et al, 2017
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Image-to-Image Translation
Isola et al, 2017
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Image-to-Image Translation
Isola et al, 2017




Image-to-Image Translation
Isola et al, 2017

Ground truth Output Output

Ground truth
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Progressive growing of GANs
Karras et al, 2018
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Image-to-Image Translation
Karras et al, 2018
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