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Regression

@ Supervised learning problem

e Training set: N points (x;, y;), X, €R", y; €R, i=1,...N.

e Aim: approximate the equation f : R” — R underlying the data with
a model §(x; w) using parameters w € R"™:

Vi = y(xi; w) = f(x;)
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Regression

@ Supervised learning problem

e Training set: N points (x;, y;), X, €R", y; €R, i=1,...N.

e Aim: approximate the equation f : R” — R underlying the data with
a model §(x; w) using parameters w € R"™:

yi = §(xii w) ~ f(x;)
o Learning problem: Find w such that we minimize the residuals A:
W = argmin||A||
w

defined by
A=y —y(xi; w).
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Regression

X, X, X3 X,

Example: Fit data with linear function y(x) = wy 4+ wox by finding the
parameters w = (wy, wp).
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Regression
Specification of the learning problem

We define ||A|| using the p-norm of A € R™

n 1/p
|all, = (ZIA:'”> :
i=1

Choice of p determines the type of regression problem:

’ p \ Learning Problem \ Name ‘
1| ming Y7 A LT (linear) optimization
2 | ming Y, A? Least squares (Gauss ~1800)
oo | miny max; A Tschebyscheff regression
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Loss function
Least-squares regression

@ Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X,Y, 6).
o X € RN¥" s the matrix of N input data points or features. A feature
has n dimensions.
o Y € RV¥/ are the labels. A label has / dimensions.
e The pair (X,Y) = (x;,Yi)i=1...n forms the training data.
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@ Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X,Y, 6).
o X € RN¥" s the matrix of N input data points or features. A feature
has n dimensions.
o Y € RV¥/ are the labels. A label has / dimensions.
o The pair (X,Y) = (x;,yi)i=1,.. n forms the training data.
@ Here we call 6 =w. We consider univariate function regression, i.e.
the labels can be written as a vector y € RV.
We choose the mean squared error as loss function:

CXy.w)= z P(xi; w))’

Note that the mean squared error and the 2-norm
C(X,y,w)=|ly—9|, have the same minimum.
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Loss function
Least-squares regression

@ Most supervised machine learning problems can be formulated as the
problem to minimize a cost or loss function C(X,Y, 6).
o X € RN¥" s the matrix of N input data points or features. A feature
has n dimensions.
o Y € RV¥/ are the labels. A label has / dimensions.
o The pair (X,Y) = (x;,yi)i=1,.. n forms the training data.
@ Here we call 6 =w. We consider univariate function regression, i.e.
the labels can be written as a vector y € RV.
We choose the mean squared error as loss function:

CXy.w)= z P(xi; w))’

Note that the mean squared error and the 2-norm
C(X,y,w)=|ly—9|, have the same minimum.
o Learning problem: seek w such that the loss function is minimal:

—argmln Z[y, 9(xi; w))?

i=

1 . N
The prefactor N~ has no influence on w. 5/33



Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations y; are produced from y(x;; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal
distribution.

N 1
yi=y(xiw)+4; Aj~A4(0,1)= Wi A7/
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Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations y; are produced from y(x;; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal

distribution.
1 2
= P(xinw)+ A A~ A (0,1) = ——e Bi/2
yi=yxiw)+A; A (0,1) Nor
We seek the maximum likelihood estimator w = argmax,, L(X, Y, w)
with
N 1
L(Xvaw):]P)[ylzy( ) 7yN* H e 2=y w))
i—1V2m
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Loss function
Least-squares regression

Equivalent statistical interpretation (Gauss): Assume that
observations y; are produced from y(x;; w) with an additive measurement
error that is independent, identically distributed (iid) from a Normal

distribution.
1 2
= P(xinw)+ A A~ A (0,1) = ——e Bi/2
yi = y(xii w)+ A, i (0,1) Nor
We seek the maximum likelihood estimator w = argmax,, L(X, Y, w)
with
N 1
L(Xvaw):]P)[ylzy( ) 7yN* H e 2=y w))
i1 vem
This is equivalent with:
argmax L(X, Y, w) = arg maxlog L(X,Y,w)
1
—argmaxZ—f — 9(xi; w))? —log (\/277:)
= argmin Z P(xi; w))?
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Linear Least Squares Regression

@ In a linear regression problem, the model has the form:
n
~ . LT _
§(xiiw) = xj w=)_ x;w;
j=1

e Matrix notation: § = Xw. Linear least squares (LLS) regression
problem:
. 2
min[ly —Xw/(/3
w
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Linear Least Squares Regression

@ In a linear regression problem, the model has the form:
n
~ . LT _
§(xiiw) = xj w=)_ x;w;
j=1

e Matrix notation: § = Xw. Linear least squares (LLS) regression
problem:
. 2
min[ly —Xw/(/3
w

o Featurization: Starting from some initial data r; € R, we define n
basis functions or feature functions ¢; : RY — R. Thus every
datapoint is featurized:

ri— % = (01(ri), ... 9n(ri)) .
@ Our linear regression model then has the form
y(ri; w) = wi91(r;) + ... + wpdn(r))

with can be nonlinear in r.
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Linear Least Squares Regression

@ In a linear regression problem, the model has the form:

n
o T
§(xiiw) =x; w=Y x;w,
j=1
e Matrix notation: § = Xw. Linear least squares (LLS) regression
problem:
. 2
min[ly —Xw/(/3
w

o Featurization: Starting from some initial data r; € R, we define n
basis functions or feature functions ¢; : RY — R. Thus every
datapoint is featurized:

ri— % = (01(ri), ... 9n(ri)) .
@ Our linear regression model then has the form
y(ri; w) = wi91(r;) + ... + wpdn(r))

with can be nonlinear in r.
o Example: with ¢ = {1,r,r?} and w = (wy, wo, w3) we can fit a

. . _ 2
quadratic function f(r) = wy +war+ wsr=. 7/33



Linear Least Squares Regression
Normal equations

The vector w € R" is the solution to min ||y — Xw/|, exactly if it fulfills
the normal equations
X Xw=XTy

The linear regression problem has a unique solution exactly if the rank of
X is maximal, i.e. tk(X) = n.
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Linear Least Squares Regression
Normal equations

The vector w € R" is the solution to min ||y — Xw/|, exactly if it fulfills
the normal equations
X Xw=XTy

The linear regression problem has a unique solution exactly if the rank of
X is maximal, i.e. tk(X) = n.
Direct inversion (numerically unstable and inefficient):

w=(X"X)"1XTy=X"y.

where X is the Moore-Penrose pseudoinverse of X.
Defining the covariance matrices

Cxx = XX
Cxy =Xy

(here Cxy € R™1, but it is a matrix if we have multiple regression
targets) the formal solution can be written as:

w = C)_01<CXY
8/33



Validation and hyperparameter selection

o Validation: LLS solution gives us the in-sample training error:

T train traln ’\ traln traln
Ein = C(X"™"y yr i — X

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Egy:

Eout _ C(Xval val W) — || val Xval ||2’
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o Validation: LLS solution gives us the in-sample training error:

E. — C(Xtrain ytram A Hytram Xtram |
in —

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Egy:

Eout _ C(Xval val W) — || val Xval ||2’

o Hyperparameter selection: Hyperparameters cannot not be
obtained from the learning algorithm (here LLS). For example, the
number of type of feature functions ¢ .
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Validation and hyperparameter selection

o Validation: LLS solution gives us the in-sample training error:

E. — C(Xtrain ytram A Hytram Xtram |
in —

but we would like to validate how good the learnt model predicts an
independent data set, i.e. the out-of-sample validation or test
error Egy:

Eout _ C(Xval val W) — || val Xval H2’

o Hyperparameter selection: Hyperparameters cannot not be
obtained from the learning algorithm (here LLS). For example, the
number of type of feature functions ¢ .

o Example: The type of function ¢ used for training cannot be
determined by minimizing the training error. For example, the model

N
1 x=x;
y(x) = w;ily (x with  14.(x) =
)= X Wil () (%) {0 o
has zero training error, but predicts f(x) = 0 for every point x not in

the training set. 9/33



Underfitting vs. Overfitting

Degree 1 Degree 4 Degree 15
— Model — Model — Model
— True function

ees Samples

— True function
eee Samples

— True function
ees Samples

1From http://scikit-learn.org
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o Data-based validation is an effective way to solve the
hyperparameter selection problem:
@ Divide dataset into
o training set (XUain ytrain)
o validation set (X"l yva),
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o validation set (X"l yva),

@ Learn parameters using the training set:

W= argmin Hytrain _ Xtraian2
w

The resulting residual E, = ||y™" — X"™"W||, is the training error
or training loss.
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o Data-based validation is an effective way to solve the
hyperparameter selection problem:
@ Divide dataset into
o training set (XUain ytrain)
o validation set (X"l yva),

@ Learn parameters using the training set:

W= argmin Hytrain _ Xtraian2
w

The resulting residual E, = ||y™" — X"™"W||, is the training error
or training loss.
@ The error of the learnt model in predicting data not used for the
training,
Eou = Hyval _ Xva]wH2
is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data
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o Data-based validation is an effective way to solve the
hyperparameter selection problem:
@ Divide dataset into
o training set (XUain ytrain)
o validation set (X"l yva),

@ Learn parameters using the training set:

W= argmin Hytrain _ Xtraian2
w

The resulting residual E, = ||y™" — X"™"W||, is the training error
or training loss.

@ The error of the learnt model in predicting data not used for the
training,

Eou = Hyval _ Xvale2

is called the validation or error/loss. It provides a metric to
validate how well the model generalizes to new data

@ Choose hyperparameters by minimizing the validation error.

(careful: selecting hyperparameters and computing Eoy requires a
third test set or a more advanced validation routine). 11/33



Underfitting vs. Overfitting

Fixed data size

Mean Error

High variance

v

Model Complexity
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Cross-validation

@ Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.

@ Methods to “shuffle” training and test data to reduce the bias from
the data splitting.
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@ Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.

@ Methods to “shuffle” training and test data to reduce the bias from
the data splitting.

@ Cross-validation is a simple and widely used approach:

© Split the data into k nonoverlapping folds (Xi,y"). The
complementary sets are (X~',y™").
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Cross-validation

@ Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.

@ Methods to “shuffle” training and test data to reduce the bias from
the data splitting.

@ Cross-validation is a simple and widely used approach:

© Split the data into k nonoverlapping folds (Xi,y"). The

complementary sets are (X~/,y~).
@ For each fold i:

@ Train learning algorithm on training data:

w = argm“i’n Hy”‘ —X”'WH2

@ Compute validation error:

i i
out*Hy —X'w H
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Cross-validation

@ Pathological division where rare events / outliers are included only in
training or validation set can lead to undesirable behavior.

@ Methods to “shuffle” training and test data to reduce the bias from
the data splitting.

@ Cross-validation is a simple and widely used approach:

© Split the data into k nonoverlapping folds (Xi,y"). The

complementary sets are (X~/,y~).
@ For each fold i:

@ Train learning algorithm on training data:
W' = argmin Hy”‘ —X”'WH2
w
@ Compute validation error:

= ly" = X"

OUt

© Cross-validation error is then given by:

1&
Eout = ; Z Eout
i=1
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Cross-Validation

[eration 11 -{0 000 0/0000000090000000
(heration 2} DOV VGD 000 U990V 99009
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1

LFrom https://en.wikipedia.org/wiki/Cross-validation_(statistics) 14/33



Statistical Estimator Theory
Example: Regression
We now explicitly distinguish between the true function f that is sampled
by a given set of observations (x;,y;):
yi=f(x))+4; A;j~.4(0,1)

and the estimator y(x; w).

Learning problem

Learn function f(x) by selecting function y(x) from a hypothesis set .77,
which (in some sense) performs a best approximation y = f.
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yi=f(x))+4; A;j~.4(0,1)
and the estimator y(x; w).

Learning problem

Learn function f(x) by selecting function y(x) from a hypothesis set .77,
which (in some sense) performs a best approximation y = f.

Prediction problem

| A

How can the learning problem be meaningfully defined if (x) can, in
principle, take any value on unobserved inputs?
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Statistical Estimator Theory
Example: Regression

We now explicitly distinguish between the true function f that is sampled
by a given set of observations (x;,y;):

yi=f(xj)+4; A;~A4(0,1)

and the estimator y(x; w).

Learning problem

Learn function f(x) by selecting function y(x) from a hypothesis set .77,
which (in some sense) performs a best approximation y = f.

| A

Prediction problem

How can the learning problem be meaningfully defined if (x) can, in
principle, take any value on unobserved inputs?

Answer: a meaningful definition of learning is that the fitted model will
perform approximately as well in predicting unseen data as it did in
approximating training data (Ein ~ Eout)-

n oul 15/33



Statistical Learning Theory

Ein, Eout, Bias and Variance for a given Model as a Function of N

Variance

Error
T
I
I

’’’’’

Number of data points 1

We assume that the true function f is sufficiently complicated so that we
cannot learn it exactly, i.e.

N

Y (F(xi) — 9(xi; w))? >0 Yw

i=1
Even in the limit N — c we maintain an asymptotic error E;, = Eyy,
called the model bias — property of the function class 7.

1From Mehta et al, arXiv:1803.08823v1
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Statistical Learning Theory

Ein, Eout, Bias and Variance for a given Model as a Function of N

Variance

Error
T
I
I

’’’’’

Number of data points 1

Typical behavior:
@ After quick initial drop (not shown), Ei, increases with N towards
the model bias.
@ E,yt decreases with increasing N as more cases are observed and
thus covered by the model.

e The generalization gap E,, — E;, (due to overfitting) decreases
with increasing N.

1From Mehta et al, arXiv:1803.08823v1 17/33



Statistical Learning Theory

Ein, Eout, Bias and Variance for a given Model as a Function of N

Variance

8l ) 5T T
- I B
7 ©
- 3
Ein
Number of data points 1
Insights:
@ It is not sufficient to minimize Ej,, as Eyy may be large. —
regularization.

@ As the true bias is not practically available, one minimizes Egyy.

18/33
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Statistical Learning Theory
Bias-variance tradeoff

High variance, X X x
low-bias model X X

X x X
\ X 7 5 True model
X X
*® X
X ¥ x

X
x X @ X
X
X X x Y
X x\ Low variance,

xXxx X high-bias model 1

e Bias-variance tradeoff: The more/less expressive the model, the
larger/smaller the fluctuations, respectively.

1From Mehta et al, arXiv:1803.08823v1 19/33
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Bias-variance tradeoff

High variance, X X x
low-bias model X X

X x X
\ X 7 5 True model
X X
x @y X
X
x X @ s
X
X X x Y
X x\ Low variance,

xXxx X high-bias model 1

e Bias-variance tradeoff: The more/less expressive the model, the
larger/smaller the fluctuations, respectively.

@ To minimize E,y, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.

1From Mehta et al, arXiv:1803.08823v1 19/33



Statistical Learning Theory
Bias-variance tradeoff

High variance, x X

low-bias model X

X x X
\ X j//True model

X
X
X
X

X
X
X

> X X

X
X *®
XX x X|*
X
X X x Y
X x\ Low variance,

Xx xx X high-bias model 1

e Bias-variance tradeoff: The more/less expressive the model, the
larger/smaller the fluctuations, respectively.

@ To minimize E,y, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.

@ Asymptotically, i.e. with increasing size of the training set, complex
models will perform better than simpler models as they have reduced
bias.

1From Mehta et al, arXiv:1803.08823v1 19/33



Statistical Learning Theory
Bias-variance tradeoff

High variance, x X

low-bias model X

X x X
\ X j//True model

X
X
X
X

X
X
X

> X X

X
X *®
XX x X|*
X
X X x Y
X x\ Low variance,

Xx xx X high-bias model 1

e Bias-variance tradeoff: The more/less expressive the model, the
larger/smaller the fluctuations, respectively.

@ To minimize E,y, it is sometimes better to use a more-biased model
with small variance than a less-biased model with large variance.

@ Asymptotically, i.e. with increasing size of the training set, complex
models will perform better than simpler models as they have reduced
bias.

o Optimal model selection depends on the amount of training data.

1From Mehta et al, arXiv:1803.08823v1 19/33



Bias-Variance decomposition

Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f:

Eout — C(Xle, del Ale _ ||del . yvzﬂH;’

where X¥ = (x}2, .. XX‘}I) are the features of the validation set, y** are

the corresponding observations and §*¥ are the predictions of the
estimator.
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out-of-sample MSE without knowing the true function f:

Eout — C(XVd17 del Ale _ ||del . yvzﬂH;’

where X¥ = (x}2, .. XX‘}I) are the features of the validation set, y** are
the corresponding observations and §*¥ are the predictions of the
estimator.
Idea: Compute expected E,y of given estimator y on all
drawn from the with following approach:
© Fix observation points x;
© Repeat:
© Run experiment, observe training data (X,y"™") = (x,,y}ra‘“) =1..N
and train the estimator §(x).
@ Repeat experiment observe validation data

Xy = (xi v )iz,
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Bias-Variance decomposition

Task: for a given estimator, e.g. LLS, model the behavior of the
out-of-sample MSE without knowing the true function f:

Eout — C(XVd17 del Ale _ ||del . yvzﬂH;’

where X¥ = (x}2, .. XX‘}I) are the features of the validation set, y** are
the corresponding observations and §*¥ are the predictions of the

estimator.
Idea: Compute expected E,y of given estimator y on all
drawn from the with following approach:
© Fix observation points x;
© Repeat:
© Run experiment, observe training data (X,y"™") = (x,,y}ra‘“) =1..N

and train the estimator §(x).
@ Repeat experiment observe validation data

(Xoy™) = (xi, v )ir, |
© Compute expectation E over observations y™in and y¥a by averaging
over noise realizations.

E [C(X yvdl Avdl)] E
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Bias-Variance decomposition
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Bias-Variance decomposition

+2E [ ~9(x ))2]

+22Eym[y, F(x)|Eyuain [ (x) — 9 (xi)]
T o
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Bias-Variance decomposition

N ' 9
£ Y Eyuun [(FO) — 5())°]
i=1
N
+2) By [y — F(60)]Eynin [F(x7) — 5]
= = val[€]=0




Bias-Variance decomposition

Decomposition of the estimator error:

2
E[(F(x) - 9x(x))’] =E [(f(x,-)E[y(xo]m[y(x;)w(x;)) ]
a b
=E[a’] +E[b?] —2E [ab]
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Bias-Variance decomposition

Decomposition of the estimator error:

2
E[(F(x) - 9x(x))’] =E [ (f(x,-) ~E[(x)] +E[y(x)] y(x,-)) ]
a b
=E[a’] +E[b?] —2E [ab]
The mixed term disappears (abbreviating y; = E[J(x;)]):
E[ab] = E[(f(xi) — yi) (Vi — ¥ (xi))]
=RE[f(x;)yi] — fF(x))E[p(xi)] - ¥ + VE[7(xi)] =0
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Bias-Variance decomposition

Decomposition of the estimator error:
2

E [(70) ~ 9x(xi))?] =B | | £(x) =B+ EB(xi)] - 7(x)
b

a

=E[a’] +E[b?] —2E [ab]
The mixed term disappears (abbreviating y; = E[§(x;)]):
E[ab] = E[(f(xi) — i) (yi — 9 (xi))]
=E[f(x))yi] — F(x)E[I(xi)] = 77 + VE[f(xi)] = 0
The square bias E [32] is the asymptotic estimation error in the infinite

data limit from the true value:

E [32} =Bias® = Y (f(x;) —E[p(x)])?

™=

1
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Bias-Variance decomposition

Decomposition of the estimator error:
2

E [(F(xi) — 9x0)?] = | | £0x) ~BI()] + E[9x:)] = 5(x)
a b
=E[a’] +E[b?] —2E [ab]
The mixed term disappears (abbreviating y; = E[J(x;)]):
E[ab] = E[(f(x:) — ) (7 — 9(x:))]
=E[f(x))yi] — F(x)E[I(xi)] = 77 + VE[f(xi)] = 0

The square bias E [32] is the asymptotic estimation error in the infinite
data limit from the true value:

(F(xi) ~E[7(x)])°

™=

E [32} = Bias® =
1

The variance E [b2] is the estimator's fluctuation due to finite-sample
effects:

N
B [67] = Var = YL E[(7(x) ~ B ()] 22/33



Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

N
Z Val /))2] = Bias® + Var + Noise.

out -

@ The optimal model minimizes the expected loss by balancing bias
and variance.

23/33



Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

N
Z Val /))2] = Bias® + Var + Noise.

out -

@ The optimal model minimizes the expected loss by balancing bias
and variance.

@ A model is underfitting the data if bias is too high.
@ A model is overfitting the data if variance is too high.
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@ The optimal model minimizes the expected loss by balancing bias
and variance.

A model is underfitting the data if bias is too high.

A model is overfitting the data if variance is too high.

Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.
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Bias-Variance decomposition

Combining these expressions, we see that the expected out-of-sample
error, i.e. the expected loss of our model can be decomposed as:

N
Z Yal(x;) = 9 (%)) 2] = Bias? + Var + Noise.

out -

@ The optimal model minimizes the expected loss by balancing bias
and variance.

A model is underfitting the data if bias is too high.

A model is overfitting the data if variance is too high.

Since data is often limited, a simple model with a finite bias (i.e. an
asymptotic error) may be preferable to a complex model with a high
variance.

@ Optimal choice depends on the amount of data available. The more
data, the more complex models are optimal.
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Statistical Learning Theory

E;n, and Eyy as a function of model complexity

@ Model complexity is a property of the function class #. For
example, model complexity increases with the number of free
parameters (e.g. higher-order polynomials are more complex than
the linear model).

Eout

7
1
Il
Optimum

’
1

!
1

Error
I
]

Variance

!
1
1
1
1

Bias

1
B e e e

Model Complexity 1

1From Mehta et al, arXiv:1803.08823v1 24/33



Statistical Learning Theory

E;n, and Eyy as a function of model complexity

@ Model complexity is a property of the function class #. For
example, model complexity increases with the number of free
parameters (e.g. higher-order polynomials are more complex than
the linear model).

@ Behavior for fixed N:
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Statistical Learning Theory

E;n, and Eyy as a function of model complexity

@ Model complexity is a property of the function class #. For
example, model complexity increases with the number of free
parameters (e.g. higher-order polynomials are more complex than
the linear model).

@ Behavior for fixed N:
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Model Complexity 1

o Eyy is typically minimal for intermediate complexity. Low-complexity
involves a large training error, overly complex models involve large
prediction errors due to overfitting.

1From Mehta et al, arXiv:1803.08823v1
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Statistical Learning Theory
Analyze bias

We assume a linear model f(x) =x"

regression estimator:

w, and use the least squares

w=(X"X)"1XxTy
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Statistical Learning Theory
Analyze bias

We assume a linear model f(x) =x"

regression estimator:

w, and use the least squares

w=(X"X)"1XxTy
Then the bias of a single sample point x; is:
Bias = f(x;) —E[J(x)]
= x,Tw —-E [X,T(XTX)_ley]

Using the observation model in matrix form, y = Xw + ¢, and exploiting
Ex [€] = 0 shows:

Bias=x;/ w—E [X,T(XTX)’IXT(XW + 8)}
—xw-E {X,-T(XTX)_leXW +x] (XTX)1XTe)
=x/w—E {x,Tw +x; (XTX)_IXTE]
=x/w—x;w—x] (X"X)"IXE[e]
=0

Thus the least squares estimator w = (X X)X TY is unbiased! 25/33



Statistical Learning Theory
Analyze variance

Then the variance of a single sample point x; is:

Var = E[(5(x)) ~ E[p(x))])’
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Using again the linear model f(x) =x"

regression estimator:

w with the least squares

w=(X"X)"1xTy

and use the unbiased estimator result Ex [Jx(x;)] = x, w, we have:
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Statistical Learning Theory
Analyze variance

Then the variance of a single sample point x; is:

Var = E[(5(x)) ~ E[p(x))])’

T

Using again the linear model f(x) = x'w with the least squares

regression estimator:
w=(X"X)"1xTy

and use the unbiased estimator result Ex [Jx(x;)] = x, w, we have:
2
Var=E [(X,T(XTX)IXTy - x,-Tw) }

Using the observation model in matrix form, y = Xw + &:

[ 2
Var= [ (3] (XXX (xw ) x]w) |

i 2
=K (x,-Tw—i-x,T(XTX)*lXTS - x,-Tw) }
I 2
—E (x,T(XTX)’lez-:) }
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Statistical Learning Theory
Analyze variance

Using a®> = aa' if a is a scalar:
Var = {(x?(XTX)IXTS) (x,T(xTx)leg)T]
=E {x,-T(XTX)’leeeTX(XTX)’lx,}
—x/ (XTX)IXTE [seq X(XTX) 1x;

where we have exploitet that XX is a symmetric matrix.
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Statistical Learning Theory
Analyze variance

Using a®> = aa' if a is a scalar:
Var = {(x?(XTX)IXTS) (x,T(xTx)leg)T]
=E {x,-T(XTX)’leegTX(XTX)’lx;}
—x/ (XTX)IXTE [seq X(XTX) 1x;
where we have exploitet that XX is a symmetric matrix.
The only component in this expression that depends on the data

averaging is €. Writing E [££T} = Ggl, where [ is the identity matrix
and cancelling terms gives:

Var = 62x; (X7 X) 1x;

27/33



Statistical Learning Theory
Analyze variance

We use a principal component decomposition of the data

1
*XTX: 22 T
N uxz-u
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Statistical Learning Theory
Analyze variance

We use a principal component decomposition of the data
1
—X'X=ux?u’
N

where the eigenvectors
U= [ug,...,up]

are the principal vectors (normalized as u; u; = 1) and the eigenvalues
2 _ g 2 2
> =diag(ox1,---,Oxn)

are the variances of the data along the principal vectors.
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Statistical Learning Theory
Analyze variance

We use a principal component decomposition of the data
LxTx —uz2u’
N

where the eigenvectors
U= [ug,...,up]

are the principal vectors (normalized as u; u; = 1) and the eigenvalues
2 _ g 2 2
> =diag(ox1,---,Oxn)

are the variances of the data along the principal vectors.
Then the estimator variance is:

o2
Var = WSX,-TUZ_zuTX;

gn
-y Lo

28/33



Statistical Learning Theory
Analyze variance
If we assume G)2<k =1, then we have:

Var =

=9,
-
3>
[l ng
X
e
o
-
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Statistical Learning Theory
Analyze variance
If we assume G)2<k =1, then we have:
2 n
o,
Var = Ws Y x ug
k=1

Now we compute the expected variance, assuming that x; is also from
A(0,1). As a result,

E {x?uk} =1
for any uk with ujug =1, and thus:

(72 n
E[Var] = E We Y xjui| =07
k=1

=3
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Statistical Learning Theory
Analyze variance

If we assume G)2<k =1, then we have:
2 n
o
Var = Ws Y x ug
k=1

Now we compute the expected variance, assuming that x; is also from
A(0,1). As a result,

E {x?uk} =1

for any uk with ujug =1, and thus:

2 n
Oc T 2 N
£ V' x u| =02~
N kgl I k‘| € N

@ Gauss-Markov Theorem: The ordinary least squares estimator
w = (XTX)"1XTy has the minimum variance among all unbiased
linear estimators. It is thus called the best linear unbiased estimator
(BLUE).

@ This does not mean this estimator will have the minimum expected

loss Eyy - a biased estimator may have lower Eyy for finite training
data. 29/33

E[Var] = E




Practical workflow

For complex estimators (e.g. neural networks), exhaustive
hyperparameter search is unfeasible.
Typical approach:

| Establish proxy for optimal error rate (e.g. expert performance) |

| € '

Yes

Bigger model
Training error high? - Triign longer

Underfitting | New model architecture

No -
v u
Yes
Validation error high? |msssssssssp | More data
Overfitting Regularization
New model architecture
No
DONE!
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Regularization

Regularized LLS: add penalty term on w with suitable norm:

. 2
min [y — Xwl|3 + 4 [lw]|.
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. 2
min|ly — Xwl[3 + 2 [lwl].

Purpose:

o Statistical: reduce expressiveness of model by reducing fluctuations
of w. Allows to control the bias-variance tradeoff via A.

@ Numerical: regularized solutions often numerically better behaved.

@ Structural: e.g., induce sparsity in solution.
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Regularization

Regularized LLS: add penalty term on w with suitable norm:

Purpose:

. 2
min [y — Xwl|3 + 4 [lw]|.

o Statistical: reduce expressiveness of model by reducing fluctuations
of w. Allows to control the bias-variance tradeoff via A.

@ Numerical: regularized solutions often numerically better behaved.

e Structural: e.g.,

induce sparsity in solution.

Regularization method depends on penalty type:

’ Regularization type ‘ Penalty term ‘ Prior Solution methods
Tikhonov regularization | [w|3 Normal | Closed form
Ridge regression
Lasso regression [lwlly Laplace | Proximal gradient descent
lp regularization [lwllo - Forward selection,
Backward elimination
Elastic nets 1—a)|wl;+ - Proximal gradient descent
o wll, 4 /4
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L2 (Ridge) Regularization

We would like to work in high-dimensional feature spaces

ri— X;j = ((]51(!’,'), ...,(I)n(l’,’))T.
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penalize the norm of the solution:
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penalize the norm of the solution:
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where A is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

w= (M + XTX) B Xy

= CxCxy
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L2 (Ridge) Regularization

We would like to work in high-dimensional feature spaces

ri— X;j = ((]51(!’,'), ...,(I)n(l’,’))T.

However, this leads to danger of overfitting. To avoid overfitting, we
penalize the norm of the solution:

. 2 2
min [y — Xw([3 + 4 [w]3,

where A is a hyperparameter.
Taking derivatives and setting them to zero yields the solution:

-1
w= (M JrXTX) Xy
=CxCxy

This is equal to the direct solution of the normal equations, only that we
use the so-called shrinkage estimator for the covariance matrix:

Cxx = A1+ XTX

32/33



Sparsity-inducing Regularization

o LO regularization
. 2
min[ly — Xwl|3+ 2 [lwlly,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.
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o L1 regularization, e.g. using the least absolute selection and
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Sparsity-inducing Regularization

o LO regularization
. 2
min[ly — Xwl|3+ 2 [lwlly,

Most extreme way to enforce sparsity. Magnitude of the coefficients
of w does not matter, we only want to minimize the number of
non-zero entries. This regularization function is not commonly used
in practice, as it is very difficult to solve.

o L1 regularization, e.g. using the least absolute selection and
shrinkage (LASSO) method.

. 2
min [y —Xw][3 +2 [[wll;
e Elastic net
, 2 2
minly —Xw|3 + 2 [ (1 - @) lwll; + o |wl3]
Where o switches between the two extremes o =0 (L1

regularization) and @ =1 (Ridge regression).
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