Introduction to Probabilistic Models

F. Noé!

Deep Learning Classes, FU Berlin 2018

1/28

Classification

o Classification problems have discrete output variables (categories).

@ Previously, we have used ordinary regression norms, such as
Hy—yHg. Here, we want to go to a probabilistic description.

Convolutional Classifier 1
input possible 2
Image calegories 509 000600000000 3
o IV 7RIt 7) 1
8 23222322%222229 4
g 333333533333333
s GYMY pQr ISR
=4 SesSr(3SsrsSsss T 5
S L6000 6666GC66660
B 772%1777172177727 6
3 FrE TSI EE ISP YRS Network taining
- 2577793778997 7
=
E Data & Labels 8

[

2/28

Reminder
Minimization of cost functions

Meaning Symbol Shape
Feature vector X R”
Feature matrix X RO
Label vector y R/
Label matrix Y L
Parameters 0 RY
Loss / Cost function C(X,Y;6) R

Cost function C quantifies how well a given model with parameters 0
explains the observations X.

Model fitting

~

0 = argming C(X,Y; 0)

Minimimizing the cost C is equivalent to maximizing the score —C.
3/28

Logistic Regression

Shallow-learning basis of classification problems

o Input: Training data (X,y) with feature matrix X € RV*" and
one-dimensional binary outputs y € {0,1} (2 classes).

@ Goal: Predict x — § with minimal error.

o Idea 1: Perceptron. Define linear model with weights w € R” and

offset b € R
si=x; w+b.

Map s; through sign function in order to turn into a classifyer:

1 s5>0

yi=sign(si) = {0 5 <0
1

4/28

Logistic Regression

Shallow-learning basis of classification problems

o It often desirable to have a soft classifier with y € [0,1] C R:

e noisy data — not all data points can be unabiguously assigned.
o enables computation of gradients — can use deep structures with
backpropagation.

o Idea 2: Define linear model with weights w € R"” and offset b € R
si=x, w+b.

Map s; through logistic (sigmoid) function:

h 5/28

Softmax Regression
Statistical mechanics energy model

Statistical mechanical system with two states 0 and 1 and energies
€ = 0 (reference) and &;.

(]

o Boltzmann weights:

wop=¢e 0 =1

wp=e &
o Probability:
w1 e & 1
P T 1te® el o(—&1)
o Logistic regression is obtained with model & = *XITW* b.

6/28

Logistic Regression

Shallow-learning basis of classification problems

@ Probability to belong to category 0 or 1:
1

1_|_efxiTw7b
p(yi=0]x;,0)=1-p(y;=1]|x;; 0)

p(yi=1]x;,0)=o(x/ w+b) =

o Likelihood of data set {x;,y;}i—1..n under the model:

N

p({xi,yi} | 0) = g [O'(X,Tw + b)] 4 [1 —o(xj w+ b)]

1-y;

7/28

Logistic Regression

Shallow-learning basis of classification problems

o Log-likelihood:

N
L(6) = ;y/ log (x;] w+ b)+ (1 —y;)log [1— o(x] w+ b)}

=

o Maximum likelihood estimator:

~

0 =arg max L(6) =arg mein {-L(8)}

o Cross-entropy:

C(0)=-L(0)
N
= — Zy;logc(x?w—k b)—‘r(l —y,-)log 1—G(X,-Tw+b)
i=1
@ As in linear regression, the cross-entropy is often equipped with

regularizers.
8/28

Logistic Regression

Shallow-learning basis of classification problems

@ Minimize cross-entropy, using 6’(x) = o(x)(1 —o(x)):

aC N o'(x/ w+b) —0o'(x] w+b)
= _ —t I + 1—v; I S e
dwy ,:Ziyl o(x/w+b) X+ (1= 1) 1—o(x/w+b) ik
N
=_ Zy,- [1 —o(x/w+ b)} xik — (1= y;) o (x; w+ b)xix
i=1
N
=) [G(x,-Tw—&—b)— ,} Xik
i=1
@ Likewise N
2C

S5 = Lot wb)-y,
Y

o Using 6 = (b,wa,...,wp,), results in the gradient:
N - 1
vC(0) = . —y;
Cc(0) ,:Zi [G(x, w+ b) y,} (w)

No closed-form solution — numerical optimization. 9/28

Softmax Regression
Shallow-learning basis of classification problems

Regression to multiple classes: {1,2,...,/}.

One-hot encoding: y; € R/ with:

o 1 C,':k
K= N0 else

@ Probability of x; to be in class k: Softmax function
ex,-kaerk
p(yik =1 | Xii 9) - Sk(x’., 6) - Zl'fl ex;er+bj

o Corresponds to statistical mechanics model with energies
& = —Xl—-er — bj.
o Likelihood:
N I .
p({xi,yi} |) = [T T [Sk(xi:)1 [1 - Si(xi; 0)]" ™

k=1 10/28

IX
—

i

Softmax Regression
Shallow-learning basis of classification problems

@ Loss function:

/
Z, Yiklog Sk(x;; 0) + (1 — yix) log [1 — Sk(x;; 0)]

”MZ

e For [=1, we recover the cross-entropy for logistic regression.

@ For /=2, use that yj; =1—y» and Sy(x;;0) =1— 51(x;;0), and
obtain:

c(0)=-2 %yil log S1(xi; 0) 4+ (1 — yi1) log[1 — Si(x/; 6)]

i=1

e Equivalent with cross-entropy for logistic regression (up to constant

factor).
o For a two-class classification problem, it is equivalent to use one
output neuron with logistic activation or two output neurons with

softmax activation. 11/28

Restricted Boltzmann Machine (RBM)

e Energy-based model. Visible units v; € {0,1}, hidden units
hj S {0, 1}.

@ Bipartite interaction graph: visible-hidden interactions, but no
hidden-hidden or visible-visible.

o Standard energy function with biases a;, b; and weights wj;:

E(V,h) = —Za,-v,- —ijhj —ZW,'J'V,'hj
i j ij
=—a'v—b'h—v'Wh.

Continuous-variable versions and different energy functions exist.
@ Each hidden unit can be thought as a representative of a data
pattern or feature.
@ Closely related to the Hopfield memory model

12/28

Restricted Boltzmann Machine (RBM)

Energy function

E(v,hy=—a'v—b'h—v'Wh.

Defines the localations of minima (attractors in Hopfield model,
metastable states in RBM

\‘ update
\
© _ ”_minimum
attractor energy

st 13/28

basin of attraction

Restricted Boltzmann Machine

o Probability of state (v, h):
plv,h) = Z e EH)
@ Partition function Z sums over all visible and hidden states:

7 = ZG_E(V’h)
v.h

14/28

Restricted Boltzmann Machine (RBM)

What can a RBM represent?

o Define free energy of visible units E(v) = —logp(v) and rewrite as:

(M "
E(V) = —Zi:a,-v,- —;;# <;W,'jv,'>

where Kj(") are the cumulants of the distribution of e?".

Cumulants are — as moments — a way to characterize probability densities (e.g.,
as for moments, the first two cumulants are the mean and the variance).

@ E(v) includes all orders of interactions between the visible units.
— Each hidden unit can encode interactions of arbitrarily high order.
— With sufficiently many hidden units, any probabilisty distribution 15/28
of v can be encoded (compare to universal representation theorem).

Restricted Boltzmann Machine
Training

@ Probability of visible vector v:
p(V) — 271 ZefE(v,h)

h
@ Derivative of the log-probability with respect to the weight is:

dlogp(v
agi() =Y p(h|v)vihi— Y p(v',h)vjh;
Wij h v',h
= Eqata [Vihj] — Emodel [Vihj]
e Gradient ascent learning rules (learning rate f8):
Awjj = B (Egata [Vihj] — Emodel [Vih;])
Aaj = B (Egata [Vi] — Emoder [i]) 16/28
Abj=p (Edata [hj] — Emodel [hj])

Restricted Boltzmann Machine
Training

@ Given v it is easy to sample h:

w(hj=1]|v)

Pl =1 1V) = =0 v s wih = 1v)
Using w(hj =1]|v) =exp(—b;j —X;wjv;) and w(h;=0]|v)=1:
exp(—b; — ¥ w;jvi)
hi=1|v)=
A J V) 1+eXp(—bj—Z,- W,'J'V,')
ZO'(bj—i-ZW,'jv,')
i

@ Given h it is easy to sample v:

17/28
p(V,' =1 | h) = G(a,'-i-ZW,'jhj)
j

Restricted Boltzmann Machine
Training

Approximate by direct sampling of h | v:

Sjj == Edata[vihj] = Zp(h | V)V,'hj
h

Q@ S=0
@ For each v; in data batch (vq,...,vg):
@ Sample h~ p(h|v;)=oc(b+WTv;)
@ S+ S+v:hT
Q Eda [VhT] ~ %S 18/28

Restricted Boltzmann Machine
Training

Approximate by Gibbs sampling:

Qij = Emodel [vihj] = ZP(W h)v;h;
v,h

Q@ Q =0, Set v to initial random vector.
@ Repeat N, times (until convergence):
© Sample h~p(h|v)=oc(b+W'v)
@ Sample v~ p(v|h)=0c(a+ Wh)
©® Q< Q+vh'
Q Emodel [Vih] = N%Q
This scheme converges much slower, because the samples of h and v are
correlated!

19/28

Restricted Boltzmann Machine
Contrastive Divergence CD-n

Approximate by Constrastive divergence:
Qij = Emodel [vihj] = ZP(W h)v;h;
v.h

@ Q =0, Set v to initial random vector.
@ Repeat n times (not until convergence):
© Sample h~p(h|v)=oc(b+W'v)
@ Sample v~ p(v|h)=0c(a+Wh)
© Q< Q+vh'
Q Emoaet [vihj] ~ 1Q
Commonly used: CD-1. Will not provide an accurate estimate of
Emodel [Vihj] at a given time, but lead to gradients that slowly follow the
training process. Fast and works reasonable in practice.

20,28

(]
=
-

O

T

=

(=

(q]

S

N
=

@)
m
®)

Q
-

O
=
4+

0

(]
o

~SQeNNMNOBMO T
T eV A— B3
I mamep X ey~
W2xQEoe~] FON
NORCLOQU™MmY
Sw oA nawh o0
gy e~y [
PR I FAL I NE i IR
LA R 1 4 B I T JEC IR
LOOWO Yy &l

~%lg e 2 gl
SORMMEY G >~
20N —9w v
NI L NN CY
O =9 ww) A

TARATANIMNED MM
B — O~ o IR
Ll (mtn— PO~
HhQOMOMMV 3 " e
NVWRIVHW— %O

PAPNOMNOLD DD

CIONIAVWAIDT
CIo9wbINAD
TP O @I
I o NN
WIS DI ANTE
ARV IR NG We N Ya 't
fvoli QOGN VO S S W S
(HIE SRR, S0 W)
WTIISIA @A
WIS I IRADBA

R SEONUNEC I LN ~ 1) S NN
—o Nt rO~NOn
MM a o~ e
- ch 0 0 QN N ™~
B eNY ek, OO
et a Y Tt i S)
NN N N RS e
TS =9~ T
VLY OVN®RO®R DN
N X P~ T a0

21/28

Breuleux, Bengio, Vincent: Neural Computation 2011

Deep Boltzmann Machines
Deep Belief Network

Restricted Deep Deep Layer-wise Full training
Boltzmann Machine Belief Network Boltzmann Machine pre-training (CD-n etc.)
1 1 1 1 RBM3
1 11 RBM2
i 1 1 RBM1
| Visible layer | | Visible layer | | Visible layer |

@ Deep generative network, Introduction of the term “Deep learning”
(Hinton et al., 2006; Hinton and Salakhutdinov, 2006)
RBM in two top layers, deep mapping to visible nodes.
Pretraining as stack of RBMs:
o First train the bottom hidden as a normal RBM
o Now samples can be generated for the first hidden layer, which are
used to train the second hidden layer, etc.

Use pretrained deep RBMs to define a deep MLP (h(® = v):
h() = 6(b(") + h(-DTW") 22/28

(-]

Then train supervised. One of the first deep learning algorithms.

Deep Boltzmann Machines
Deep Boltzmann Machine

Restricted Deep Deep Layer-wise Full training
Boltzmann Machine Belief Network Boltzmann Machine pre-training (CD-n etc.)
1 1 1 1 RBM3
1 11 RBM2
i 1 1 RBM1
| Visible layer | | Visible layer | | Visible layer |

@ Undirected deep generative network
@ Stack of RBMs.
@ Can be rewritten in a bipartite graph by grouping visible and even
hidden layers, and odd hidden layers:
h@® KB KRG
v h® h®
Thus, Gibbs sampling can be used.

@ Alternative: layer-wise pre-training, then CD-n for unsupervised
learning.

23/28

Data generation

@ Reconstruction vg of a given data point x:
o Fix visible layer v =x, use MCMC sampling to find the state of the
hidden layer h which maximizes the probability distribution p(h|v)
e Fixing obtained h, find reconstruction vq of original data point which
maximizes the probability p(vg|h).
@ Deep Boltzmann Machine: Run forward pass to the last hidden
layer, then backward pass in reverse.
@ Application, e.g. image denoising. Example: randomly flip a fraction
of the black&white bits in the validation data, and use Boltzmann
machines to reconstruct (de-noise) the digit images.

(31205 9 |

RN R
2 99 aesrt
3 858 ¥%S
¢ 24/28
i3t QD67 1

Neural Quantum States
Carleo and Troyer, Science 2017

Physical model with spin variables v;
Use RBM to represent physical spins v; and “hidden” spins h;.

E(v,h; 0) = =) ajvi — Y bjhj =} wyvih;
; 7 7

=—a'v—b'h—v' Wh.

Model the QM wavefunction y by the marginal spin density:
y(v; 0) = Yo Ewhe)
h

The network weights are complex-valued in order to provide a 25/28
complete description of amplitude and phase of the wave-function.

Neural Quantum States
Carleo and Troyer, Science 2017

Ising model

@ Optimize y by minimizing the loss

dm;@HHMm:fW@ﬁxmmmemw
(viw) [y (v; 0) w(v; 8))dv

@ Network is trained using the variational Quantum Monte Carlo
formulation.

26,28

Project: Deep variational QMC for Molecules

Current Project (Noé group)

@ Electronic many-body Hamiltonian:
H=YVv?-
) ZZ|, Ry " ZZ|,,

e Find ground state (minimal) energy E and wavefunction y of
time-stationary Schrédinger equation:

-

Hy=ey 27/28

Project: Deep variational QMC for Molecules

Current Project (Noé group)

@ Represent ¥ by deep neural network and optimize by:
, (wiH]y) _ Jv*(x;6)(Hy)(x; 6))dx
ming(0) = =
O T T T v 0w 0))de

s.t.y(x) antisymmetric

where antisymmetry is defined by:

Y(X1,5 ooy Xy oo Xy ooy X)) = = WXL 0oy Xy oy Xiy ooy X))

e Variational Quantum Monte Carlo formulation: Sample x ~ |y(x)[? 28/28

and train with minibatches.

