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Generative Neural Networks
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Generative Neural Networks
Idea: Learn to sample intractable p(x) by sampling tractable latent
distribution

z∼ p(z)
and perform a linear transformation to a desired distribution:

x= G(z,θ)∼ p(x).
Example:

Left: Samples from normal distribution, z∼N (0, I).
Right: Samples mapped through G(z) = z

10 + z
‖z‖ to form a ring.
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Differentiable Generator Nets

Idea: Learn to sample intractable p(x) by sampling tractable latent
distribution

z∼ p(z)

and perform a linear transformation to a desired distribution:

x= G(z,θ)∼ p(x).

Complex Distribution:
G feedforward neural network
train parameters θ to sample from correct distribution.

Well-known neural network architectures:
Variational Autoencoders (inference net + generator net)
Generative Adversarial Networks (generator network +
discriminator network)
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Variational Autoencoders
Structure

min
{
−Ez∼q(z|x) logp(x | z)+DKL(q(z | x) ‖ p(z))

}
Encoder q(z | x) (inference network, recognition model):

Maps to latent space
Models approximate posterior distribution q.
DKL [q(z | x) ‖ pmodel(z)] tries to make q(z | x) and pmodel(z) similar.

Decoder p(x | z).
Decodes z→ x̂ with the aim to reconstruct the input x.
Ez∼q(z|x) logpmodel(x | z) reconstruction log-likelihood
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Conditional Variational Autoencoders
Structure
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Classification Variational Autoencoder
Structure
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Supervised training:

min

−Ez∼q(z|x) logp(x | z)︸ ︷︷ ︸
Reconstruction loss

+DKL(q(z | x) ‖ p(z))︸ ︷︷ ︸
Regularization loss

+ ‖y− ŷ‖2︸ ︷︷ ︸
Classification loss


Unsupervised training without classification loss.
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Classification Variational Autoencoder
Input-output encoding (not optimized...)
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Classification Variational Autoencoder
Sampling (not optimized...)
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Classification Variational Autoencoder
Conditional Sampling (not optimized...)

Encoder(/
Classifier Decoder(P

μ

σ z
sample

x
x

y

^

^

y

y~

Input Data Generated Data



12/30

Classification Variational Autoencoder
Interpolation (not optimized...)
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Classification Variational Autoencoder
Semi-supervised learning (not optimized...)
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Semi-supervised learning (Nsupervised
train +Nunsupervised

train = 60,000)

Nsupervised
train 100 400 1000 4000 10000 40000 60000

Test error 0.2569 0.3577 0.7047 0.9291 0.9697 0.9878 0.9920
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

Idea: Game in which the Generator network competes against a
Discriminator network, i.e. these two networks are adversaries.
Generator network G : directly produces samples

x= G(z;θ G)

Discriminator network D:
Attempts to distinguish between samples drawn from the training
data and samples drawn from the generator.
Emits a probability value that x is a true sample and not a fake:

ptrue(x) = D(x;θD)

Simplest formulation: Zero Sum Game
Discriminator receives payoff v(θG ,θD)
Generator receives payoff −v(θG ,θD)
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GAN
GAN (Goodfellow et al., 2014)

Discrimiator randomly receives either generated (fake) or training
(real) sample as input.
Generator tries to fake a sample and trick Discriminator into
believing it, Discriminator tries to reveal the truth.

https://deeplearning4j.org/generative-adversarial-network
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

During learning, each player attempts to maximize its own
payoff, so that at convergence:

θ̂ G = argmin
θG

max
θD

v(θ G ,θ D).

Default choice

v(θ G ,θ D) = Ex∼pdata logD(x;θ D)+Ex∼pmodel log (1−D(x;θ D))

Discriminator gets reward for correctly classifying samples as real or
fake.
Generator gets reward when fooling the classifier into believing its
samples are real.

At convergence:
The Generator’s samples are indistinguishable from real data
Discriminator outputs 0.5 everywhere. The discriminator may then
be discarded.
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

Pros:
Learning process does not require approximations such as variational
inference.
When maxθ D v(θG ,θD) is convex in θD , the procedure is guaranteed
to converge.

Cons:
Learning in GANs can be difficult in practice when G and D are
represented by neural networks and maxθ D v(θG ,θD) is not convex.
In general, simultaneous gradient descent on two players’ costs is not
guaranteed to reach an equilibrium.
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

Example for convergence problems in zero-sum games:
Value function v(a,b) = ab, where one player controls a and receives
value ab, while the other player controls b and receives a value −ab.
Each player makes gradient steps, increasing their own value at the
expense of the other player
a and b can go into a stable, circular orbit, rather than arriving at
the equilibrium point at the origin.

a

b

1/%1

%1/1

%1 0 1

1/%1

%1/1
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

The equilibria for a minimax game are not local minima of v , but
the points that are simultaneously minima for both players’ costs.

→ Equilibrium points are saddle points of v (local minima wrt player
1 parameters and local maxima wrt player 2 parameters).
→ There are oscillatory solutions that never relax to a saddle point.

Dropout seems to be important in the discriminator network.
Improving the convergence of GANs is a very active area of
research – since 2013 hundreds of papers have been written on that.
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)
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Conditional GAN
https://arxiv.org/pdf/1411.1784.pdf

↑ ↑
condition condition
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Plug & Play Generative Networks:
Nguyen et al, 2016
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Generative Face Completion
Li et al, 2017
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Image-to-Image Translation
Isola et al, 2017
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Progressive growing of GANs
Karras et al, 2018
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