
1 General User and Developer Info

1.1 Some notes

• https://trac.mi.fu-berlin.de/seqan/wiki/IoRevision is partly outdated, do

not rely on it!

• Currently all new IO-Code lives in SeqAn beside the old code, you do not need

any #defines to switch to the new code

• Currently only FastA and FastQ are supported in the new code base

• If you use only FastA and/or FastQ, you should definitely switch now, since the

new code is faster and more reliable

• switching is fairly easy, you only need to construct a RecordReader object for

reading and work on that (see below and dddoc for more details)

• the new calls are readRecord(), read2() (read entire document), writeRecord()

and write2() (write entire document).

1.2 Some examples

Example code for reading a single record from a gzipped file (you will probably want to

loop over readRecord()):

char filename [] = "/path/to/file.fasta.gz";

gzFile file = gzopen(filename , "rb");

if (gzdirect(file))

{

// error handling

}

Stream <GZFile > stream(file);

RecordReader <Stream <GZFile >, SinglePass <> > reader(stream);

CharString meta;

DnaString seq;

res = readRecord(meta , seq , reader , Fasta());

if (res != 0)

{

// error handling

}

1



gzclose(file);

Example code for reading an entire file efficiently (using memory-mapped strings as files

and ConcatDirect-Strings as storage):

typedef String <char , MMap <> > TMMapString;

TMMapString stream;

char filename [] = "/path/to/file.fasta";

int res = open(stream , filename , OPEN_RDONLY));

if (res != 0)

{

// error handling

}

RecordReader <TMMapString , DoublePass <Mapped > > reader(stream);

StringSet <CharString , Owner <ConcatDirect <> > > sequenceIds;

StringSet <DnaString , Owner <ConcatDirect <> > > sequences;

res = read2(sequenceIds , sequences , reader , Fasta());

if (res != 0)

{

// error handling

}

close(stream);

2 Overview of new Stream Module

There is a new Stream module, which currently resides in extras. The module is com-

posed of these main components:

• Stream related (basic abstraction for IO)

– the stream concept [concept_stream.h]

– Stream adaptations [adapt_fstream.h, adapt_cstdio.h ..]

– Stream class and specializations [stream_*.h]

• reading related

– core RecordReader classes (generic Buffer around Stream) [record_reader*.h]

2



– tokenizing code (low level readUntil* , readWhile* calls etc) [tokenizing.h

is.h]

– Format related reading based on tokenizing and RecordReader [read*.h]

– File format detection based on above code [guess_stream_format.h]

• Format related writing code [write*.h]

• code for casting from string to numerical types [lexical_cast.h]

3 Notes on completing the IO-Revision

3.1 General Information

• different Stream backends are not yet implemented (e.g. char array, iostream)

• tokenizing.h contains copies of all old parsing/tokenizing functions, please have

a look there when switching to new IO (especially since in the old IO everyone

confused ’blank’ and ’whitespace’, as well as other terms!). Please also add any

tokenizing functions to tokenizing.h and not into your file format code. Do also

check if you can use the helper-functions in tokenizing.h for your task!

• once all code is ported read2() and write2() shall be renamed to read() and write()

Throughout SeqAn, IO-related code is marked with //IOREV and zero or more of the

following tags:

Tag Description

_nottested_ This code may not work at all

_docnottested_ This code is documented but may behave different from doc

_nodoc_ This code should be documented but isn’t

_duplicate_ This code reimplements functionality found elsewhere

_delcandidate_ This code should probably just be deleted

_notIO_ This code is falsely tagged as IO

_noop_ This call doesnt do anything

_stub_ This looks like its not done yet

I would recommend first following the advice in this document and after having imple-

mented/ported the relevant code portions, to grep through seqan for IOREV and deal

with the leftover code on an individual basis. Since tagging happened in the beginning

of my work, some code comments might not by applicable anymore.

3



3.2 Open Issues in existing files

File TODOs

tokenizing.h specialized comparison code for other alphabets beside Dna and Dna5

read_fasta_fastq.h Questions what kind of format behaviour is legal

(empty sequences? empty headers?)

3.3 Sequence IO

The following previously supported file formats are still missing: embl, genbank, QSeq,

raw, CGViz (write-only)

Once they are implemented and all applications have changed to new IO, the following

files will be obsolete:

1. seqan/file/cstream.h

2. seqan/file/stream.h

3. seqan/file/file_base.h

4. seqan/file/file_cstyle.h

5. seqan/file/file_filereaderiterator.h

6. seqan/file/file_filereader.h

7. seqan/file/file_format.h

8. seqan/file/stream_algorithms.h

9. seqan/file/file_format_raw.h

10. seqan/file/file_format_fasta.h

11. seqan/file/file_format_embl.h

12. seqan/file/file_format_genbank.h

13. seqan/file/file_format_cgviz.h

14. seqan/file/file_format_mmap.h

15. seqan/sequence/sequence_stream.h

16. seqan/misc/misc_parsing.h

The following files shall not be removed, it needs to be decided where to put them in

the future:

1. seqan/file/chunk_collector.h

2. seqan/file/file_page.h

3. seqan/file/file_page_raid0.h

4



4. seqan/file/string_external.h

5. seqan/file/string_mmap.h

6. seqan/file/file_array.h

7. seqan/system/file_directory.h

8. seqan/system/file_async.h

9. seqan/system/file_sync.h

3.4 Store-IO

It was decided that store-io should be ported and moved to the new stream mod-

ule, this covers seqan/store/store_io*. Other than the beginning of a new sam-

implementation (seqan/stream/read_sam.h) none of this has yet happened.

3.5 Alignment and Alignment Graph formats

Includes TCoffeLib, BlastLib, MummerLib, NewickFormat (all in

seqan/graph/graph_align_tcoffee_io.h) and fasta-alignment format (in

seqan/graph/graph_align_tcoffee_io.h AND in seqan/file/file_format_fasta_align.h).

These should probably be ported as well, but it was not yet decided whether they should

be moved to the stream-module or continue to reside in the graph-module.

5


