
Shortest Inspection-Path

Queries in Simple Polygons

Christian Knauer, Günter Rote

B 05-05
April 2005



Shortest Inspection-Path Queries in Simple
Polygons

Christian Knauer, Günter Rote

Institut für Informatik, Freie Universität Berlin,
Takustraße 9, D–14195 Berlin, Germany.

{knauer,rote}@inf.fu-berlin.de

Abstract. We want to preprocess a simple n-vertex polygon P to
quickly determine the shortest path from a fixed source point s ∈ P
to some point visible from a query point q ∈ P . We call such queries
inspection-path queries. We give an algorithm that computes a data struc-
ture which answers the queries in logarithmic time. The data structure
has O(n) size and can be computed in O(n log n) time.

Keywords: Computational geometry, Simple polygons, Shortest paths, Visibility.

1 Introduction

Many variations of the problem of computing shortest paths in simple polygons
have been studied extensively in the past. One incarnation of the problem is to
find the shortest path from a given fixed source point s in a simple polygon P
with n vertices to view a query point q ∈ P .

Our goal is to preprocess the input (P, s) to answer queries of this type:
Given a query point q ∈ P , find the shortest distance one needs to travel in
P from s to see q, i.e., we want to find a point c ∈ P visible from q that
has the shortest distance from s. The query can be answered in O(n) time
without preprocessing [4], and in O(log n) time with O(n2) preprocessing time
and space [5]. We improve and simplify the latter result and describe a solution
with O(n log n) preprocessing time and O(n) space that achieves O(log n) query
time. Our approach can report the shortest path π from s to c in O(log n + k)
time, where k is the length of π. The results are summarized in the following

Theorem 1. Let P be a simple polygon with n vertices and s ∈ P . We can
compute a data structure of O(n) size in O(n log n) time to answer queries of
the following type in O(log n) time: Given a query point q ∈ P , find the shortest
distance one needs to travel in P from s to see q. If desired, the actual shortest
path can then be reported in time linear in its length.

The paper is structured as follows: In Section 2 we define the necessary
terminology and give a structural characterization of the solution that forms the
basis of our approach. We then prove Theorem 1 by describing and analyzing the
data structure and the query process in Section 3. We provide some conclusions
in Section 4.



2 Preliminaries

Our terminology and notation follows [5]. The visibility polygon of a point x ∈ P
will be denoted by V (x), the shortest path in P between two points x, y ∈ P by
p(x, y), the shortest path tree from s in P by T , and the shortest path map of
P with respect to s by M .

If we remove V (q) from P , the polygon splits into disconnected regions that
we call invisible regions. Each such region has exactly one edge in common with
V (q) and will be called a window. If q is invisible from s, then s lies in an invisible
region (if q is visible from s, then clearly c = q). In this case it is easy to see
that the point c lies on the window w separating s from V (q), in particular c is
the point on w that has the shortest distance to s, cf., Fig. 1.

s

b

c

q

V (q)

ar

Fig. 1. The window ab separates s and V (q). c is the point with shortest distance to s
that is visible from q. The drawing shows the shortest paths from q to a, from q to b,
and from q to w, respectively.

We next describe a simple characterization of c given in [5]. To this end let
a and b denote be the endpoints of w, and r be the lowest common ancestor of
a and b in T , i.e., the last common vertex between the two paths p(s, a) and
p(s, b), cf., Fig. 1.

The paths p(r, a), p(r, b) together with the segment w = ab form the funnel
of w which will be denoted by F , cf. Fig. 2. Note that the paths p(r, a), p(r, b)
are outward convex.

Let a = v0, v1, . . . , r = vm, . . . , vk, vk+1 = b denote the vertices of the funnel
from a to b. F can be decomposed into triangles by extending the edges of F
until they intersect w. Let xi denote the intersection point of the extension of
the edge vivi+1 with w (hence, x0 = a and xk = b). The shortest path from s to
points on the segment xixi+1 passes through vi as the last vertex of P . Denote

2



r = v3

a = v0 b = v6

v1

v2

v4

v5

x1 x2 x3

c

x4

Θ2

Fig. 2. The funnel F over the window w = ab. The optimal point c is the foot of the
perpendicular from v2 to w.

the angles between the extension edges and the window by θ0, θ1, . . . , θk, i.e.,
θi = ∠bxivi for 0 ≤ i < k and θk = π − ∠abvk.

The outward convexity of the paths p(r, a), p(r, b) implies that the sequence
θ0, θ1, . . . , θk is increasing. As a consequence we can characterize the optimal
contact point c in the following way:

1. θi = π/2 for some 0 ≤ i ≤ k. In this case, c = xi.
2. θi < π/2 and θi + 1 > π/2 for some 0 ≤ i ≤ k. In this case, c is the foot of

the perpendicular from vi+1 to w.
3. θ0 > π/2. In this case, c = a.
4. θk < π/2. In this case, c = b.

We can therefore search for c by looking at the angles θi: If θi > π/2 then c
lies left of xi, whereas if θi < π/2 then c lies right of xi.

3 The data structure

To answer a query q we will proceed in two steps:

1. Compute the window w that separates s from V (q) along with the funnel
base r.

2. Compute the optimal point c on w.

After the preprocessing phase, the first step can be done in O(log n) time
using standard data structures for point-location and ray-shooting queries, and
for lowest common ancestor (LCA) queries in trees. The second step involves a
binary search and the total running time for this step will also be O(log n).

3



3.1 Preprocessing phase

The preprocessing phase prepares two data structures: the first set of data struc-
tures will enable us to quickly compute the window w that separates s from V (q)
along with the funnel base r in the query phase. Another data structure will help
us with the binary search for the optimal point c on w.

Computing the funnel. In the first step of the preprocessing phase we do the
following:

1. Compute the shortest path tree T and the shortest path map M in O(n)
time, along with a point-location data structure for M that supports O(log n)
time point-location queries [1, 6].

2. Compute in O(n log n) time a data structure that supports O(log n) time
ray-shooting queries to P [3].

3. Preprocess T in O(n) time to support O(1) time LCA-queries [2].

Computing the optimal point on the window. In the second step of the prepro-
cessing phase we do the following:

1. In O(n log n) time store the O(n) vertices VM of the shortest path map M
in an array A, sorted in clockwise order along the boundary of P . Note that
these vertices are defined by looking at the extensions of the edges of P until
they hit the boundary of P , see Fig. 3.

2. Compute a tree T ′ in O(n) time by augmenting the tree T as follows:
(a) Add all the vertices of VM as new leaves.
(b) Add an edge between a vertex u of T and a vertex v ∈ VM iff u is the

endpoint of an edge e of P and the extension of e beyond u that hits the
boundary in v.

3. Preprocess T ′ in O(n) time to support O(1) time LCA-queries.

3.2 Query phase

As a first step in the query phase we will check if q is visible from s (in this
case c = q). This can be done in O(log n) time by shooting a ray from q in the
direction of s and testing if the boundary of P is hit before s. In the following
we can assume, that q is not visible from s.

As we already mentioned, the query will then be answered in two steps: First
we compute the window w that separates s from V (q) along with the funnel base
r, then we find the optimal point c on w.

Computing the funnel. To find w = ab and r in O(log n) time in the first step
of the query phase we proceed as follows:

Since the window separating s from V (q) is specified by the last vertex of
P on the shortest path from s to q (Fig. 1), we can find a in O(log n) time by
locating q in M . To find b in O(log n) time we shoot a ray from q in the direction
of a. Next, we compute vk (which is an endpoint of the edge containing b) in
O(1) time, and finally, we get the funnel base r = LCAT (a, vk) in O(1) time.

4



r = v3

a a7

v1

v2

v4

v5

x1 x2 x3

c

x4

s

q

a2

a5

a4
a6

a1

a3

a8

Fig. 3. The vertices a1, . . . , a8 are created by the extensions of edges of P that hit the
boundary. They are the vertices of the shortest path map of P that are not polygon
vertices.

Computing the optimal point on the window. To find the optimal point c on w
in O(log n) time in the second step of the query phase we proceed as follows:

– First we check if θ0 > π/2 or θk < π/2. In the first case c = a, in the second
case c = b, and in either case we are finished.

– Next we look at the extensions of the edges emanating from the apex r = vm

of the funnel. If θm−1 = π/2, or θm = π/2, or θm−1 ≤ π/2 < θm, c is the
foot of the perpendicular from vm to w and we are finished.

– If θm−1 > π/2, then θi > π/2 for m ≤ i ≤ k, since the angle sequence is
increasing. In particular c is the foot of the perpendicular from some vertex
vi to w, where vi is on the left side p(r, a) of the funnel F , i.e., 1 ≤ i < m.
To determine for which vertex vi the perpendicular to w has to be drawn, we
would like to perform a binary search on the sequence v0, . . . , vk. However
this sequence is not directly accessible, so we use the array A instead, and
perform a binary search on the interval between a and b in this array. For
a vertex u in this interval we compute LCAT ′(v1, u), which is one of the
vertices v1, . . . , vm on the left edge of the funnel, say vi. By computing the
angle θi we can decide if the binary search has to continue to the left or to the
right of u. After O(log n) iterations the binary search is narrowed down to
an interval between two successive vertices in A. This implies that the point
vi from which the perpendicular to c has to be drawn is also determined.

– In the case that θm−1 < π/2, we have that θi < π/2 for 1 ≤ i < m, so c
is the foot of the perpendicular from some vertex vi to w, where vi is on
the right side p(r, b) of the funnel F . In this case, we proceed analogously to

5



find vi by binary search in A. Again, the total running time for the search
is O(log n).

In the end, we can compute the length of the shortest path in constant time
from the information stored in the shortest path tree. If desired, the shortest
path itself can be output in linear time.

4 Conclusion

We described a data structure to find for a given query point q in a simple n-
vertex polygon P with a designated starting point s the shortest path from s
to some point visible from q. Our approach yields a structure of linear size that
can be computed in O(n log n) time and achieves logarithmic query time. This
significantly improves previous work on the subject [5]. Our approach also seems
to be conceptually simpler. It remains unclear if the problem can still be solved
efficiently if we consider the case of polygonal scenes, i.e., polygons with holes.

Acknowledgements

We would like to thank Frank Hoffmann for fruitful discussions on the subject.

References

1. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-
time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2:209–233, 1987.

2. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

3. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. J. Algorithms, 18:403–431, 1995.

4. R. Khosravi and M. Ghodsi. Shortest paths in simple polygons with polygon-meet
constraints. Inf. Process. Lett., 91(4):171–176, 2004.

5. R. Khosravi and M. Ghodsi. The fastest way to view a query point in simple
polygons. In Abstracts of the 21st European Workshop on Computational Geometry
(EWCG), Eindhoven, Netherlands, pages 187–190, 2005.

6. D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput.,
12(1):28–35, 1983.

6


