Re-estimation of a transition matrix

In this project, goal is to start with a specified transition matrix, generate a continuous trajectory out of it and then after rotating it into high-dimensional space and adding some noise, try to retrieve it again by $\mathrm{msm} / \mathrm{hmm}$.
(i) Generation of the continuous trajectory data:
a) Construct a transition matrix P of three meta-stable states with one intermediate state and generate a discrete trajectory s_{t} with a minimum length of 10000 frames. Such a transition matrix might look like

$$
P=\left(\begin{array}{ccc}
0.97 & 0.03 & 0 \\
0.015 & 0.97 & 0.015 \\
0 & 0.03 & 0.97
\end{array}\right) .
$$

b) Define a two-dimensional output probability distribution for each state i of P, e.g., Gaussians with mean μ_{i} and covariance matrix C_{i}. Then, for each time t, generate an output $x(t) \sim G\left(\mu_{i}, C_{i}\right)$. The means of the Gaussians should span a plane.
c) Rotate the data into 5 -dimensional space, translate it by a constant vector and add some noise.
(ii) Reconstruction of the transition matrix:

Apply tica/pca, k-means/regspatial and msm/hmm. Do the transition matrices agree? What happens if the Gaussians do not span a plane?

