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Figure from: Husic & Pande 2018, JACS, “Markov State Models: From an Art to a Science”
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Figure from: Husic & Pande 2017, J Chem Phys, “MSM lag time cannot be used for variational model selection” I
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Figure from: Husic & Pande 2018, JACS, “Markov State Models: From an Art to a Science” I




Let’'s make sure we're clear on MSMs
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The VAC

T(T)Sez:/\zﬂbz_’tz:_T/an\ﬂ

I (The eigenvalues have special
properties according to the

Eigenvalues: related to timescales < Perron-Frobenius theorem:

- They are real
- There is a unique

maximum eigenvalue of 1
- All other eigenvalues have
_ absolute values below 1

Eigenvectors: dynamical processes

Key papers:

Noé & Nuske 2013, Multiscale Model Simul, “A Variational Approach...”
Nuske et al 2014, J Chem Theory Comput, “Variational Approach...”




The VAC

Tx)p, =, — t;, = -1 /In | A

I Unknown true

. eigenvalues
The variational /€19

m /\ m
principle is for the 2 A< S} A,
=1 1=1

eigenvalues

Eigenvalue predictions from MSM

Key papers:

Noé & Nuske 2013, Multiscale Model Simul, “A Variational Approach...”
Nuske et al 2014, J Chem Theory Comput, “Variational Approach...”




The VAC
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Figure from: Husic & Pande 2017, J Chem Phys, “MSM lag time cannot be used for variational model selection”




Cross validation
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An example
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From Husic et al 2016, J Chem Phys, “Optimized parameter selection...”




Finally: the VAMP!
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Finally: the VAMP!
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What we’ve learned...

- We have many choices when we make Markov state models

- Luckily, we have the VAC to evaluate different choices objectively
- But not the MSM lag time, of course.

- We just have to do it under cross-validation to avoid overfitting

- We can use the VAMP in the more general, nonreversible case
- Which is the same as the VAC when we have an MSM!

- With an objective metric, can’t we just make models automatically..?
- Stay tuned!
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