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Figure from: Husic & Pande 2018, JACS, “Markov State Models: From an Art to a Science”



The problem

Clustering

▷ algorithm
▷ number of     

clusters

Featurization

▷ internal coordinate 
system
▷ transformations

Dimensionality Reduction

▷ PCA, TICA
▷ TICA lag time, #
components

Raw
Trajectories

MSM
⊠ # 

timescales
⊠ lag time

Figure from: Husic & Pande 2017, J Chem Phys, “MSM lag time cannot be used for variational model selection”

Try 5 different 

featurizations?

Compare 3 

different TICA 

lag times?

Search 10 different numbers of clusters?

Do chi angles help for a 

dihedral featurization?

Need a method to objectively 
evaluate modeling choices!
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Let’s make sure we’re clear on MSMs

Figure from: Husic & Pande 2018, JACS, “Markov State Models: From an Art to a Science”

This is it! This 
*is* the MSM.

Transition matrix

★ Thermodynamics (populations!)
★ Kinetics (transition probabilities!)
★ Dynamical processes (eigenvectors!)
★ Pathways (TPT!)



The VAC
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T(!)ψi = λiψi ti = – ! / ln | λi |

Eigenvectors: dynamical processes

Eigenvalues: related to timescales

The eigenvalues have special 
properties according to the 
Perron-Frobenius theorem:

- They are real
- There is a unique 

maximum eigenvalue of 1
- All other eigenvalues have 

absolute values below 1
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The VAC

Key papers:
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T(!)ψi = λiψi ti = – ! / ln | λi |

Σ λi ≤ Σ λi

m

i=1 i=1

m⋀

Eigenvalue predictions from MSM

Unknown true 
eigenvalues

SCORE =

IMPORTANT: This 
score is only for the 

transition matrix 
defined at the given 

lag time !

①



Reminder

Clustering

▷ algorithm
▷ number of     

clusters

Featurization

▷ internal coordinate 
system
▷ transformations

Dimensionality Reduction

▷ PCA, TICA
▷ TICA lag time, #
components
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Figure from: Husic & Pande 2017, J Chem Phys, “MSM lag time cannot be used for variational model selection”

Try 5 different 

featurizations?

Compare 3 

different TICA 

lag times?

Search 10 different numbers of clusters?

Do chi angles help for a 

dihedral featurization?

✅

✅ ✅

✅

Check 5 

different MSM 

lag times?

Eligible regime for scoring MSMs



Cross validation

Key paper:

McGibbon & Pande 2015, J Chem Phys, “Variational cross-validation…”

Σ λi ≤ Σ λi
m

i=1 i=1

m⋀
Unknown true 
eigenvalues

SCORE =
This method will 
have a problem 
with overfitting

Data: Training set Validation set
Make MSM

(is there enough sampling?)
Apply MSM and score eigenvalues

some number of 
iterations with 
different sets

⨉

②
Eigenvalue predictions from MSM validation set



An example

From Husic et al 2016, J Chem Phys, “Optimized parameter selection…”



Finally: the VAMP!

Key papers:

Wu & Noé 2017, arXiv:1707.04659, “Variational approach…”
Paul et al, arXiv:1811.12551, “Identification of kinetic…”

T(!)

Transition matrix

The transition matrix has 
certain properties due to the 

reversibility assumption.

This includes having an 
eigendecomposition.
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Key papers:
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K(!)

Transition matrix

?
However, it will always 
have a singular value 

decomposition.

Σ σi ≤ Σ σi

m

i=1 i=1

m⋀
SCORE ={ φi, σi, φi }

The VAMP uses more 
general math to score 

models that may not be 
reversible

③
Consider now a different 

matrix that is not necessarily 
reversible.

It may not have an 
eigendecomposition anymore, 

or its eigendecomposition 
may not be useful.



What we’ve learned…

- We have many choices when we make Markov state models

- Luckily, we have the VAC to evaluate different choices objectively
- But not the MSM lag time, of course.

- We just have to do it under cross-validation to avoid overfitting

- We can use the VAMP in the more general, nonreversible case
- Which is the same as the VAC when we have an MSM!

- With an objective metric, can’t we just make models automatically..?
- Stay tuned!



Paper highlights

VAC theory
Noé & Nüske 2013, Multiscale Model Simul, “A Variational Approach…”
Nüske et al 2014, J Chem Theory Comput, “Variational Approach…” 

Cross-validation
McGibbon & Pande 2015, J Chem Phys, “Variational cross-validation…”

VAMP theory
Wu & Noé 2017, arXiv:1707.04659, “Variational approach…”
Paul et al, arXiv:1811.12551, “Identification of kinetic…”

General overview/history of MSMs
Husic & Pande 2018, JACS, “Markov State Models: From an Art to a Science”

General overview of ML methods
Noé 2018, arXiv:1812.07669, “Machine learning…”


