Tim Hempel No**é group** FB Mathematik und Informatik

Hands on PyEMMA Data Input, Featurization, Discretization

PyEMMA winter school 2019

The classical MSM pipeline

Featurization "picking observables", e.g. backbone torsions

PyEMMA natively supported features:

- coordinates: all, heavy, Ca, selection
- angles:
 - backbone torsions
 - sidechain torsions
 - dihedrals
- distances or contacts between
 - all atom
 - Ca
 - heavy atom
- minimum distances
 - between residues or groups
- custom features

a) "what is the best description of my system?"b) "what do I want to model?"

Featurization "picking observables", e.g. backbone torsions

How to choose features: VAMP score

- It is possible to choose features based upon VAMP-2 score
- Score mirrors the number of processes captured by a fixed number of dimensions
- in practice, need cross-validation to avoid overfitting

a) "what is the best description of my system?"

b) "what do I want to model?"

PyEMMA natively supported coordinate transforms:

- TICA (time-lagged independent component analysis)
- VAMP (variational approach for Markov processes)
- PCA (principal component analysis, not recommended)

"What is the minimum dimensionality that still represents all of the important processes?"

ACE 1 CH3 1 - ACE 1 0 ACE 1 CH3 1 - ACE 1 C

What is TICA?

- Linear approximation to the slow eigenfunctions of the system
- Maximizes auto-correlation for a given lag time (hyper-parameter)
- Estimation from data using

$$C_{ij}^{\text{TICA}}(\tau) = \langle x_i(t) x_j(t+\tau) \rangle_t$$

 Generalized eigenproblem yields basis functions

 $C(\tau)\vec{u}_i = C(0)\lambda_i(\tau)\vec{u}_i$

Guillermo Pérez-Hernández et al., 2013, JCP

"What discretization resolves my processes best?"

PyEMMA natively supported clustering algorithms:

- k-means
- regular space
- uniform time

